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Abstract

How does the dispersion of firm-level shocks affect the investment channel of monetary policy? Using

firm-level panel data, we construct several measures of dispersion of productivity shocks, time-pooled

and time-varying, and interact high-frequency identified monetary policy shocks with these measures

of idiosyncratic shock volatility. We document a novel fact: monetary policy has dampened real

effects via the investment channel when firm-level TFP shock volatility is high. Our estimates for

dampening effects of volatility are statistically and economically significant - moving from the tenth to

the ninetieth percentile of the volatility distribution approximately halves point estimates of impulse

response functions to contractionary monetary policy shocks. Given that dispersion rises in recessions,

these findings offer further evidence as to why monetary policy is weaker in recessions, and emphasize

the importance of firm heterogeneity in monetary policy transmission.
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1 Introduction

Firms’ investment is a key transmission channel from monetary policy operations to the real economy.

This aggregate response of business capital formation is shaped by firm heterogeneity in a number of

dimensions (for example: firm’s age and dividend status (Cloyne, Ferreira, Froemel and Surico, 2018);

financial position and liquidity (Jeenas, 2018); leverage (Anderson and Cesa-Bianchi, 2020), and distance

to default (Ottonello and Winberry, 2018)). In this work, the dimension of heterogeneity we focus on is

idiosyncratic firm risk.

Idiosyncratic firm risk is large and matters for firm adjustment decisions. Firms exhibit large variation

in their measured total factor productivity, and most of that productivity variation comes from idiosyn-

cratic shocks (Syverson (2011); Castro, Clementi and Lee (2015)). We document substantial differences in

idiosyncratic shock variance across sectors in the cross-section, and through time within sectors. Disper-

sion of firm-level shocks influences investment behaviour because it affects the triggering of the extensive

margin of adjustment, and therefore plays a key role in firm investment, hiring, and production deci-

sions.In this paper we study how dispersion of idiosyncratic productivity shocks affects the investment

channel of monetary policy.

The study of this interaction is important for two reasons. Firstly, investment is the most volatile

component of GDP, and is strongly procyclical. Secondly, the business investment response is a major

component of the total macroeconomic response to monetary policy operations. A better understanding

of the drivers of heterogeneous investment responses at the micro-level is important for the study of

the business cycle dynamics, and for a better understanding of what constitutes effective countercyclical

macroeconomic policy.

Our empirical strategy involves constructing firm-level productivity, and its shocks, according to sev-

eral methodologies in the literature. We compute secondmoments of firm shocks tomeasure idiosyncratic

risk at the sector and sector-year levels. Our empirical analysis involves regressing firm investment on an

identified monetary policy shock interacted with our measures of volatility. This approach allows us to

use both cross-sectional variation (making comparisons across sectors with high and low overall volatility)

and panel variation (following a given sector through time, comparing when its volatility is high versus

low).

This work contributes in two ways to our understanding of the interaction between idiosyncratic firm

shocks and their variance, firm capital adjustment decisions, and asymmetric monetary policy transmis-

sion over the business cycle. Firstly, our results document new evidence on the role of dispersion of

idiosyncratic shocks in determining firms’ investment response to monetary policy actions. Regression

analysis implies qualitatively significant dampening of the investment channel ofmonetarypolicy. Moving
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from the 10th to the 90th percentile of sectoral volatility implies up to approximately a 50 percent reduction

in response point estimates. Combining findings across three measures of productivity, and by both time-

pooled and time-varying volatility measures, the majority of our volatility interaction coefficients imply

a volatility-dampening effect on the investment channel that is statistically significant and economically

meaningful in relative size. Secondly, our results also offer an explanation as to why monetary policy is

weaker in recessions. As shown by Tenreyro and Thwaites (2016), this asymmetry along the business cycle

is particularly strong in business investment. Our results suggest this weakening of monetary policy in

bad times is (in part) due to higher idiosyncratic risk, making firms reluctant to take the extensive-margin

step of investment. Overall our findings reiterate the importance of firm heterogeneity at the micro-level

in monetary policy transmission to the real economy and its effectiveness at fighting recessions.

Related Literature This work is connected to several branches of the existing literature. Firstly work

focusing on investment and uncertainty, especially the so-called "options approach" of Bernanke (1983)

and Dixit and Pindyck (1994) which emphasizes the timing margin of firm investment decisions, and

not just simple NPV rules1 usually based on one-period investment opportunities. The options approach

is discussed in more detail in the following section. Bloom, Floetotto, Jaimovich, Saporta-Eksten and

Terry (2018) argue that uncertainty drastically dampens firm-level investment and hiring decisions when

subject to rich factor adjustment costs, featuring convex and nonconvex costs of adjustment as well as

partial irreversibility. They indicate that firms freeze their capital/labor adjustment decisions and enter a

"wait-and-see" mode, due to the “real options” effect induced by increased uncertainty.

We add to this important finding by providing empirical evidence that firms are reluctant to make

capital adjustments in response to aggregate monetary policy shocks when they face higher dispersion of

idiosyncratic shocks.

Relatedly, by employing a menu cost model2, Vavra (2014) links volatility in nominal income to price

adjustment behavior, and shows that firms are forced to change their prices more frequently when there is

higher volatility. Vavra (2014) further argues that due to this fact price change dispersion and frequency

of price adjustment are counter-cyclical. On the empirical side, Bachmann, Born, Elstner and Grimme

(2019) provide additional evidence on the interaction between volatility and firm behaviour. They point

out that higher volatility is associated with a higher probability of price adjustment, and the likelihood of

this price adjustment is higher in recessions.

Our work is related to the literature that studies the cyclicality of monetary policy effectiveness.

Tenreyro and Thwaites (2016) indicate that the macroeconomy is less responsive to monetary policy

1Dixit and Pindyck (1994) define the net present value rule as: invest if the net present value of an investment opportunity is
greater than zero, without accounting for irreversibility, and the possibility to delay the decision.

2Dotsey, King and Wolman (1999); Golosov and Lucas Jr (2007)
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shocks during recessions compared to expansionary periods - �pushing on a string" as they phrase it -

with an especially pronounced asymmetry in the reaction of investment. Our work complements these

�ndings and o�ers an explanation: elevated dispersion of idiosyncratic shocks in bad times leads to lower

responsiveness to monetary policy operations because of stronger real options e�ects and a greater share

of adjustment occurring through nominal as opposed to real channels.

This paper also relates to the literature that studies heterogeneity in monetary policy transmission. In

recent years there has been an increased focus on examining macroeconomic questions with microdata,

looking at �rm-level responses to monetary policy operations, and how those responses are patterned

across heterogeneous �rms. After employing rich �rm-level controls, recent work �nds signi�cant hetero-

geneity along the dimensions: distance to default Ottonello and Winberry (2018), liquidity position Jeenas

(2018), heterogeneity in markups Meier and Reinelt (2019), leverage Anderson and Cesa-Bianchi (2020)

and Ferrando, Vermeulen and Durante (2020). Closely related to our paper is Fang (2020), who studies

volatility's e�ects on the investment channel in a rich theoretical framework, and provides empirical results

using the interquartile range of sales growth as his volatility measure. Our paper acts as a complementary

study focusing on a novel channel �idiosyncratic �rm risk, and provides a detailed analysis of TFP shock

dispersion's dampening e�ects on the investment channel of monetary policy.

All employ high-frequency identi�ed monetary policy shocks (in the spirit of Gertler and Karadi

(2015)) with �rm-level panel data. We employ a similar econometric methodology.

Road Map In Section 2, we describe our �rm-level data and empirical strategy. Section 2.1 discusses

the approaches we employ to estimate �rm level productivity. Then, Section 2.2 presents our constructed

volatility measures. Section 3 motivates our empirical analysis through the lens of two theoretical models

in the literature. Section 3.1 stresses that increased dispersion of shocks leads to less e�ective monetary

policy through the real options channel, while Section 3.2 focuses on the nominal adjustment channel.

Section 4 presents our baseline regressions identifying average investment response to monetary policy.

We then present regression analysis interacting the monetary policy shock with measures of volatility to

identify patterns of heterogeneity in the investment response to monetary policy. Section 5 concludes.

The appendix contains further robustness checks.

2 Cross-Sectional Distribution of Productivity across Sectors

This section describes how we measure idiosyncratic �rm risk in productivity. Our empirical strategy

involves three main parts. First, we compute �rm level productivity, and �t an autoregressive process

to productivity in order to �t productivity shocks. Second, we pool these shocks in order to construct
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moments of the shock distribution by 2-digit sector. Finally in our local projection regression analysis we

interact monetary policy shocks with measures of shock dispersion.

Data We use Compustat �rm-level panel data to conduct our empirical analysis. This dataset provides

rich �nancial information for a broad range of �rms, and is relatively high frequency, with most data

reported quarterly, as opposed to yearly for other similar datasets. The principal drawback in the use of

the Compustat data relates to representativity � only listed �rms are included in the sample. As noted by

Axtell (2001) Compustat �rms are approximately lognormally distibuted, while the population of �rms in

census data is more accurately modelled by a power law (Gabaix (2016)) meaning Compustat has too few

small �rms relative to the population of �rms. Moreover, the number of �rms sampled in sector-cells do not

correspond with the aggregate sector shares. We do not see this as problematic for the following reasons:

(i) our empirical strategy exploits variation both across and within sectors (ii) aggregates calculated from

explicitly summing the microdata yield time series which behave very similarly to the national accounts

aggregates (investment growth, for example, Cloyne et al. (2018)) (iii) our focus is on the investment

channel of monetary policy, as such relatively small �rms are not likely to hold enough capital to be

meaningful to aggregated dynamics at the sector or economy-wide level.

Sample Following similar work in the literature (e.g. Ottonello and Winberry (2018)) we exclude the

so-called �FIRE" sectors (�nance and real estate) due to the very di�erent balance sheet composition of

�rms in these sectors, as well as utility �rms. We drop any of the following �rms: not based in USA,

not trading in USD, making acquisitions above 5 percent of the value of total assets in nominal values.

Nonsensical values such as negative capital or negative sales are also dropped. Where gaps in series are

only one quarter we use linear interpolation to �ll in the gaps following similar papers in the literature.

2.1 Firm Productivity

Estimating Firm Productivity Among several approaches to estimating �rm productivity, we begin

by using a Cost Share approach: imposing a functional form on production and computing functional

parameters based on observed factor usage shares. We check the robustness of such a measure using

Generalized Method of Moments and the Olley and Pakes (1996) Control Function approach.

The distributions of TFP and its innovations are show in Figure (1), pooling �rms according to broadly

de�ned sector groups. Sectors exhibit signi�cant variation in both the mean and dispersion of productivity

(left panel) as well as signi�cant di�erences in the dispersion of shocks in TFP (right panel). We investigate

what are the monetary implications of sectoral di�erences like these, but at a more disaggregated 2-digit

level.
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Figure 1: Total Factor Productivity by Sector

(a) Productivity log-levels, I 8C (b) Productivity shocks � I
8C

Note: pooled TFP levels and innovations calculated according to Cost Share method. Filled diamonds mark sectoral
means (left) and vertial lines mark the tenth and ninetieth percentiles respectively (right)

2.1.1 Cost-Share approach

We take a Cost Share approach following works such as Foster, Haltiwanger and Syverson (2008),Bloom

et al. (2018), Decker, Haltiwanger, Jarmin and Miranda (2018) and we identify productivity via structural

assumptions on the production function. We impose a Cobb-Douglass production function, and assume

inputs of capital and labor only. We calculate factor intensity parameters from median cost-shares within

sector-years. This is done for two reasons. At the �rm level this method is vulnerable to measurement

error, while the median helps �lter out extreme values. Moreover, even though in any given period

adjustment costs are likely to induce a fraction of �rms not to adjust either factor, over many �rms we can

recover average cost-shares. We construct this measure with time-varying parameters. For a given �rm

8in sector Bin year Cproductivity in logs, I 8BC, is constructed as the following, where H8BCis observed log

sales revenue3.

I 8BC= H8BC� 
 ¹# º
B–C=8BC� 
 ¹ º

B–C: 8BC (1)

3For notational clarity we report : 8BChowever Compustat reports end of period values after adjustment, hence : 8BCrefers to
last period's end-of-period capital brought into period t
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2.1.2 Generalized Method of Moments

As a robustness check we calculate TFP according to several other methodologies to gauge how sensitive

the main results are to TFP computation methods. Following Cooper and Haltiwanger (2006), we assume

I 8Cfollows an AR(1) process we can make the following quasi-�rst-di�erence transformation. To allow for

trends in TFP we detrend log sales using sector-year and �rm �xed e�ects.

¡H8BC� � B¡H8C� 1 = ¹1 � � Bº2B ¸ 
 B¹: 8BC� � B: 8BC� 1º ¸ � B¹=8BC� � B=8BC� 1º ¸ � 8BC (2)

Parameters� B = ¹2B–� B–
 B–� Bº are then estimated using the moment condition � ¹I 8BC� 8BCº = 0, setting the

innovation term orthogonal to current and lagged values of : 8BC, since it is taken as predetermined, and

lagged =8BC. In this approach production function parameters are constant over time and can only vary

across sectors.

 � �" " = arg min
�

(

# � 1
Õ

8–B–C

I 8BC� 8BC¹� º

) 0

,

(

# � 1
Õ

8–B–C

I 8BC� 8BC¹� º

)

(3)

In economic terms, this moment condition enforces that the innovation in TFP behaves like a shock -

unforecastable with C� 1 information. The weighting matrix is set to minimize estimate variation.

2.1.3 Olley-Pakes Control Function

The above methods may su�er from two problems: simultaneity and selection bias. Simultaneity prob-

lems arise due to the fact some portion of the productivity shock is known to the �rm, but not to the

econometrician. More productive �rms may invest more or hire more labor with the expectation of higher

returns. The second issue is the selection bias which originates from the correlation between negative

productivity shocks and the probability of exiting the market. Namely, �rms with a larger capital stock are

more likely to stay in the market despite a low productivity shock. This situation will cause the coe�cient

of the capital variable to be biased downward. By employing the methodology in Olley and Pakes (1996),

we account for both the endogeneity of factor inputs as well as selection bias due to low productivity �rms

exiting the sample. If we assume �rm investment is a function of state variables age, capital stock, and

productivity, provided investment is not zero we can invert the investment function I 8BC= � ¹08BC– :8BC– 88BCº.

Making this substitution we can then recover � =

H8BC= � 0 ¸ � 008BÇ � : : 8Ç � ==8BÇ � ¹08C– :8BC– 88Cº (4)

= � ==8BÇ ) ¹08BC– :8BC– 88BCº ¸ 48BC (5)
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Finally, accounting for selection, the Olley-Pakes method estimates the following by non-linear least

squares:

� ¹H8BC� � ==8BCj08BC– :8BC–exit8C� 1 = 0º = � 008BÇ � : : 8BÇ � ¹I 8BCjI 8BC� 1–exit8BC� 1 = 0º (6)

To close the estimation section: all measures of productivity are computed separately for each 2-digit

sector. However only the Cost Share method allows for time and sector variation in parameters. Olley

Pakes and GMM both estimate parameters which are �xed for the duration of the sample. We do not

see this as problematic given our �nal regression sample only runs from the 1990s to 2010 based on the

availability of the monetary policy shock variable we employ.

2.2 Volatility

We estimate a process for �rm-level productivity in logs ( I 8BC). The AR(1) component determines the speed

with which shocks decay and productivity returns to its trend, while sector-year dummies ( � BC) account

for systematic comovement among �rms within a given sector, but allow those stochastic trends to vary

freely. This component is potentially non-stationary. Firm-level �xed-e�ects ( 58) control for permanent

di�erences in productivity between �rms. Finally we also control for size and age e�ects in the level

of productivity. A separate regression is run for each 2-digit sector. Volatility is taken as the standard

deviation of � 8BC, pooling �rms at the sector- and sector-year levels 4:

I 8BC= � BI 8BÇ � B¹log size8BCº ¸ � B¹log age8BCº ¸ � BÇ 58 ¸ � 8BC (7)

We de�ne volatility as:

sectoral volatility: � B = B3¹� 8BCjBº (8)

time-varying sectoral volatility: � B–C= B3¹� 8BCjB– Cº (9)

Productivity Distributions within Sectors TFP calculated this way shows high levels of dispersion at

the �rm level (Table 4). Firms in the unconditional 95th percentile are more than twice as productive (in

sales revenue), for given inputs, than �rms in the 5th percentile. On average this ratio is tending towards

5 if we compare the top and bottom one percent of �rms overall, and within some sectors this number

is over 7. This qualitatively matches many other papers in the �rm productivity literature which �nd

signi�cant dispersion of �rm productivity.

4Our strategy to pool at the 2-digit sector level is to avoid imprecisely measuring volatility at �ner levels of aggregation, for
example at the �rm level
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Productivity Distributions across Sectors Figure (1) plots the cross-sectional distributions of TFP, pool-

ing �rms across time. Signi�cant heterogeneity in the moments of TFP (mean level, dispersion, and

moments governing shape) are clear from the left panel. The right panel displays signi�cant variation

across sectors in TFPR shock dispersion. 10th and 90th percentiles are marked.

3 Stylized Theoretical Framework

Having constructed measures of �rm-level productivity dispersion, and established stylized facts, we now

turn to motivating our empirical analysis of monetary policy's ability to a�ect �rm-level investment, based

on two mechanisms highlighted in the literature.

We rationalize our empirical �ndings by drawing a line from the results of Tenreyro and Thwaites

(2016), who show that monetary policy has asymmetric e�ectiveness in booms and recessions, through

the work of Bloom et al. (2018) and Vavra (2014) to our own results.

Monetary policy may have dampened e�ectiveness via the investment channel of transmission during

periods of higher dispersion of shocks due to (1) a real options/option value channel ( Bloom (2009) and

Bloom et al. (2018)) and (2) a nominal adjustment channel (Vavra (2014)). Our results can be interpreted

through the lens of both models, and are consistent with model predictions, however we remain agnostic

between the two channels.

Firstly, Bloom et al. (2018) links recessions with periods of higher uncertainty and more dispersion of

�rm-level productivity shocks, and we would expect to see more wait-and-see behaviour and a postpone-

ment of �rms' labour and capital input adjustments. The downstream consequence of this insensitivity

to prices and market conditions is that �rms will likely respond less to monetary policy when shock

dispersion is high, which tends to be the case in recessions.

Leading on from this inaction in factor choices, work by Vavra (2014) would suggest more adjustment

to shocks will occur through nominal as opposed to real channels when volatility is high. Greater price

�exibility has implications for monetary policy transmission. If prices were fully �exible, monetary

stimulus would have no real e�ects.

3.1 Real Options Channel

The �rst mechanism through which our work can be seen is the "options approach" to �rm investment

in work such as Bernanke (1983) and Dixit and Pindyck (1994), in which the interaction of irreversibility

and uncertainty plays a key role in investment dynamics. A simple NPV approach of whether to invest

or not ignores the timing dimension of the �rm's problem. The "when" of investment matters if such

outlays are costly to unwind in the future if things go wrong. Moreover, a �rm with an opportunity to
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invest is essentially holding a call option - the right but not the obligation to invest. The opportunity cost

of investing is to give up the option value of waiting.

Recent work by Bloom (2009) and Bloom et al. (2018) emphasizes the role of uncertainty in �rms' factor

input choices, especially in recessions. Empirical evidence shows that uncertainty, or measures of shock

dispersion more generally, goes up in recessions.

The uncertainty e�ect acts through changes in the expected future distribution of idiosyncratic shocks,

which combined with time-to-build can induce wait-and-see behaviour in �rms if they expect the chance

they are ejected from the inaction region of the state-space next period is higher. High dispersion of

shocks, and with it a higher option value of inaction, makes �rms temporarily insensitive to factor prices

and causes them to freeze hiring and investment decisions in order to avoid double-paying nonconvex

adjustment costs.

In these two models of �rm dynamics with �uctuations in uncertainty, �rms learn today that tomor-

row's shock distribution will be more dispersed. There is no direct e�ect today, since the variance of

today's shocks hasn't changed, however the �rm now forms expectations over a wider distribution of

shocks.

Bloom et al. (2018) setup a rich, heterogeneous �rm environment to capture the several impacts of

uncertainty shocks observed in the data. The model incorporates nonconvex adjustment costs of capital

and labor, to create a real options channel of uncertainty shocks in their model. The capital adjustment cost

includes a �xed disruption cost, as well as partial irreversibility of investment. Irreversibility is integrated

via an asymmetric price of capital, which depends on whether the transaction is a capital purchase or sale.

A sale only receives a partial share of capital's full price. Irreversibility results in an asymmetric behavior,

making negative shocks more important as capital sales cause extra losses.5

This is an Ss type model, therefore if the productivity (combination aggregate and idiosyncratic com-

ponents) falls into the inaction region, �rms do not hire and invest and thus do not su�er the corresponding

adjustment cost. However, if productivity reaches the boundary of this region, then the �rm pays the

necessary costs, and adjusts its capital and/or labor inputs.

The authors �rst state that the presence of adjustment costs in the above-mentioned formulation causes

real options e�ects. The authors argue that an increase in uncertainty widens the inaction region, making

any adjustment decision more di�cult than before. This leads to an economy-wide freeze in extensive

margin adjustments of hiring and investment decisions and making all �rms insensitive to any policy

changes (or shocks more generally).

Secondly, the authors argue for the existence of an Oi-Hartman-Abel e�ect, that is, in the absence

5Labor adjustment costs also include a very similar �xed disruption cost, and a partial irreversibility mechanism. For the sake
of brevity, we are omitting labor adjustment discussion here. Interested readers may refer to the relevant section of Bloom et al.
(2018).
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of adjustment costs, and output is convex in productivity, then an increase in the standard deviation

of the productivity distribution a�ects the economy positively, ( i.e. output and investment increases,

unemployment decreases). Moreover, if uncertainty is resolved, the Oi-Hartman-Abel e�ect is triggered,

and �rms start to invest and hire again, and output rises.

As noted by Bloom (2009), it is plausible that such wait-and-see e�ects have consequences for monetary

policy transmission, and macroeconomic stabilisation more broadly. Higher uncertainty in recessions

would make �rms much less sensitive to monetary policy operations directly, that is, where monetary

policy variables enter the �rm's dynamic problem becomes less important. This however would still allow

monetary policy to act via other indirect channels.

Our �ndings are in line with the predictions and explanations of Bloom et al. (2018). The authors'

predict that �rms freeze their investment and hiring decisions when facing higher uncertainty. According

to our empirical �ndings, if a sector has higher dispersion of idiosyncratic productivity shocks, then in

that sector, �rms' investment response to a monetary policy shock is weaker.

3.2 Nominal Adjustment Channel

Dispersion of shocks also plays a role in the frequency of price changes.The nominal adjustment mechanism

acts through price adjustments counteracting monetary policy actions. Vavra (2014) shows empirically

that during recessions typical volatility measures rise, and the cross-sectional standard deviation of price

changes increases. He then argues that with higher dispersion of �rm-level shocks, �rms adjust their

prices more frequently, and so more �rm adjustment takes place through the nominal margin rather than

through quantities. Any nominal stimulus attempt induced by the monetary authority generates more

in�ation and gives less of a boost to the real economy when volatility is high in recessions.

Vavra (2014) discusses that there are both direct and indirect e�ects of second moment shocks. The

direct e�ect is the notion that more dispersed shocks increase the likelihood of pushing �rms to the action

region of the state space, thus �rms adjust their prices more frequently. If the �rm faces a choice of

adjusting in several dimensions, it is plausible to think short-run changes in prices are easier for the �rm

than changes in factors, especially capital subject to partial irreversibility.

However, as discussed in the section above on real options, volatility also raises the option value of

waiting, therefore the inaction region gets wider which makes �rms temporarily suspend their decisions

(including price adjustment). The latter e�ect is called indirect e�ect in Vavra's language. Vavra (2014)

indicates that in case of a persistent increase in volatility, the direct e�ect dominates the indirect e�ect,

therefore during recessions more �rms adjust their prices and prices get more �exible which undermines

the e�ectiveness of any nominal changes. Figure 2 shows both e�ects in a stylized way.
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Figure 2: Direct and Indirect E�ects of Second Moment Shocks

(c) More Mass in Tails

I

5¹I º

(d) Inaction Regions Expand

I

5¹I º

Note: Panel (a) � ¹I jE� º 7 � ¹I jE! º for extreme values of I in the left tail. Panel (b) Inaction regions expand
with volatility as the option value of waiting increases.

In order to explain these results, he also uses an Ss type model. First, he assumes that idiosyncratic

volatility is perfectly negatively correlated with aggregate productivity ( i.e. as the aggregate productivity

increases the dispersion of idiosyncratic productivity shocks decreases). In the model, aggregate states are

the aggregate nominal spending, and aggregate productivity, while the idiosyncratic states are previous

period's nominal price, current period idiosyncratic productivity and the menu cost.

Firms operate as follows. In each period, after observing their own idiosyncratic productivity and

a menu cost draw, and knowing its own inherited price, aggregate nominal spending, and aggregate

productivity, �rms decide either to change their posted nominal price or keep prices unchanged for

another period. If �rms decide to change price, then they pay the menu costs, enabling them to set their

optimal nominal price. On the other hand, if they decide not to change their price, then they keep their

inherited price.

He explains the above-mentioned empirical facts by the direct channel of second moment shocks

dominating the indirect e�ects, in the context of price setting. Higher dispersion leads to more frequent

price changes, which makes prices more �exible. Therefore, as the volatility increases, nominal shocks

should have smaller real e�ects.

Our empirical �ndings state that as the dispersion of idiosyncratic productivity shocks at the sector

level increases, the investment responsiveness of �rms to monetary policy shocks falls. While this is

consistent with the mechanism proposed by Vavra, we should di�erentiate our setting from his.

Firstly, Vavra (2014)'s model does not feature capital, so cannot speak directly to paths from volatility

to the investment channel of monetary policy transmission, nevertheless the broader lessons of the model
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are informative externally: higher idiosyncratic shock volatility shifts the relative balance between real

versus nominal channels of adjustment.

Secondly, he examines responses to monetary shocks as a function of dispersion pooled at the economy-

wide level, while we examine dispersion at the sector level. His work focuses on variations in dispersion

over time, while our work uses cross-sectional variation, comparing di�erences in dispersion across sectors,

and the full panel variation of our dataset, using variation within sectors, moving over time.

Finally, we do not observe �rms' pricing choices directly, and our labor data is at a lower frequency

than needed. As such, there is not a direct mapping from his model to our data analysis, and our results

only speak for capital adjustment. Nevertheless, we rely on the notion that higher shock dispersion forces

more �rm adjustment following monetary policy operations to be nominal (through prices) and less to be

real (input quantities).

4 Monetary Policy Analysis

To analyse the impact of monetary policy on �rm-level investment we employ a local projections speci-

�cation. We regress investment at horizon � steps ahead�8–Ç� = log : 8–Ç� � log : 8–C� 1 on a constant, the

monetary policy shock mps C, �rm-level controls, as well as �rm and calendar-quarter seasonal e�ects.

Our vector of controls, X8BC� 1, comprises four lags of the shock and �rm characteristics (age and size).

Since we include �rm �xed e�ects, we have no need f or sector e�ects. Sector �xed e�ects would be a

linear combination of the �rm e�ects. Thus we implicitly control for permanent di�erences in average

investment behaviour across sectors. In this baseline regression, all sectors are pooled together.

Firm Investment 8BÇ� = 2� ¸ � � mpsC¸ X8BC� 1� � ¸ 5�8 ¸ � �@¸ E8BÇ� (10)

The monetary policy shock is scaled such that it induces a 25 basis points increase in the short-term

interest rate (3-month Treasury bill rate), with monetary policy shocks proxied with the high frequency

shock series of Miranda-Agrippino and Ricco (2017). This series proxies for the changes in policy which

are separate from the endogeneous component which reacts to the state of the macroeconomy (e.g a

Taylor-type rule creates a simaltaneity problem between policy and state of the economy).

We prefer this proxy for monetary policy shocks since it does not generate the price or output puzzles

of other similarly motivated proxies (Romer and Romer (1989), Gertler and Karadi (2015)), that is to say,

empirical IRFs have the signs which match with economic theory (see Appendix for aggregate IRFs to RR,

GK, and MAR shocks). Standard errors are clustered on the �rm-level.

Our baseline regression sample runs from 1991@2 to 2009@4, made up of approximately 20,000 �rms

and 600,000 �rm-quarters.
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Impulse Response Functions Dynamic responses to monetary policy shocks are presented as impulse

response functions (IRF). The sequence of coe�cients f � ¹0º–� ¹1º•••� ¹� ºg trace out the investment response

to the shock mpsCover the horizon � 2 f 0–1– •••�g after a monetary policy shock. The IRF conducts the

following thought experiment: comparing two observationally similar �rms over periods f C– C¸ 1– •••– C¸ � g,

but one is subject to an isolated, one-period unit shock, and the other is not, holding constant certain

characteristics of the two �rms, for example recent histories of shocks, size, and age.

� � = �
h
Investment8Ç �

�
�
� mpsC= 1–XC� 1

i
� �

h
Investment8Ç �

�
�
� mpsC= 0–XC� 1

i
(11)

Figure 3: Impulse Response Functions of Firm Investment (%)

Note: Shaded regions represent 68 and 95 percent con�dence intervals respectively. Standard errors are clustered at

the �rm level. Vertical axis is in percent di�erence, horizontal axis is quarters after shock hits

Figure (3) shows average investment is cut gradually, with a peak contraction of around 8-10 percent

occurring around the end of the third year after impact.

4.1 Volatility Across Sectors and Monetary Policy

Next, we interact the monetary policy shock with volatility (time-pooled by sector). Given the exogeneity

of the shock mpsC, this regression investigates the di�erential responses of investment to monetary policy

across volatility by sector. In regression subscripts, sector Bdenotes the sector of �rm 8: B= B¹8º.

Investment8BÇ� = 2� ¸ ¹ � � ¸ � � � Bº � mpsC¸ X8BC� 1� � ¸ 5�8 ¸ � �@¸ E8BÇ� (12)
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Controls remain unchanged from the baseline model. An estimate for � � with the opposite sign to � �

would suggest volatility decreases responsiveness to monetary policy shocks.

The second column of Figure (4) reports positive interaction coe�cients along the horizon, for all three

volatility measures. The �rst two remain statistically signi�cant along the majority of the horizon shown.

Results suggest that the investment channel of monetary policy is patterned across sectors by volatility,

with sectors with higher overall volatility reacting signi�cantly less to monetary policy shocks. Figure

(5) uses the regression estimates to construct IRFs for �rms at the tenth and ninetieth percentiles of the

sectoral volatility distribution, for all three measures of volatility.

Figure 4: Investment Impulse Response Functions to Monetary Policy Shocks
and MPS-Volatility Interactions

Cost Share
(a) Monetary Policy Shock Coe�cient (b) MPS - Volatility Interaction Coe�cient

Olley Pakes
(c) Monetary Policy Shock Coe�cient (d) MPS - Volatility Interaction Coe�cient

Note: Shaded regions represent 68 and 95 percent con�dence intervals respectively. Standard errors are clustered at

the �rm level. Vertical axis is in percent di�erence, horizontal axis is quarters after shock hits



Figure 4: Investment Impulse Response Functions to Monetary Policy Shocks
and MPS-Volatility Interactions

GMM
(a) Monetary Policy Shock Coe�cient (b) MPS - Volatility Interaction Coe�cient

Note: Shaded regions represent 68 and 95 percent con�dence intervals respectively. Standard errors are clustered at

the �rm level. Vertical axis is in percent di�erence, horizontal axis is quarters after shock hits

Figure 5: Heterogeneity in Investment Channel of Monetary Policy by Sectoral Volatility

(c) Cost Share (d) Olley Pakes (e) GMM

Note: The above charts construct IRFs to a 25 basis points contractionary monetary policy shock, evaluated at the

tenth and ninetieth percentile of the unconditional time-pooled volatility distribution.

Figure(4) shows that �rms operating in sectors with higher averagevolatility of idiosyncractic TFP

shocks adjust their capital on average less than those operating is less volatile sectors in response to a

monetary policy shock. This pattern of volatility dampening the investment channel of monetary policy

is robust to the choice of volatility construction.

Next, we look at time varying volatility, to see how volatility dampens real reactions within sectors,

using panel variation following sectors through time.
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4.2 Time-varying Volatility Interactions

We recalculate volatility so that that volatility can vary across sectors and through time, � B–H� 1, however

variation in volatility is at the yearly not quarterly frequency due to labor input data availablility only

at the lower frequency. This time-varying volatility enters the regression lagged by one year H¹Cº � 1 so

that volatility is allowed to in�uence monetary policy transmission, but the measure of volatility is not

contaminated by the e�ects monetary policy shock in period C.

Investment8BÇ� = 2� ¸ ¹ � � ¸ � � � B–H� 1º � mpsC¸ X8BC� 1� � ¸ 5�8 ¸ � �@¸ E8Ç � (13)

Controls and regression structure remain otherwise the same as the baseline speci�cation. Figure(6)

presents IRFs to the monetary policy shock and the shock-volatility interaction coe�cients.

If volatility is high for a given sector when the shock hits, the implied response is signi�cantly dampened

compared to if the shock hit in a period when baseline (time C) volatility was low.

Of the three measures of TFP shock volatility, CS and OP show results consistent with a dampening

e�ect of volatility on the investment channel of monetary policy. Volatility interaction coe�cients are

typically positive, if not sign�cant along all of the horizon, however Olley-Pakes volatility interaction

coe�cients reach zero at certain horizons. One could expect a slight deterioration of sign�cance/preciison

of estimates in the time-varying volatility case given that volatility enters with a one year lag and only

evolves annually. In the next section we try to improve estimation by using other proxies for faster moving

quarterly volatility.

As in the previous regressions, we then use these coe�cients to construct hypothetical IRFs at the

tenth and ninetieth percentiles of the sector-year volatility distribution, shown in Figure(7).

Interpreting the results of the time-invariant volatility interactions and time-varying interactions jointly,

it appears that only one of the possible six speci�cations tested in total produces results not consistent

with some pattern of volatility dampening of the investment channel of monetary policy.
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