
Dynamic Programming part 2

Investment, Finance and Asset Prices ECON5068

Thomas Walsh

Adam Smith Business School 1/21

Lecture Overview

• Dynamic Programming Recursive Formulations

• Investment Choice

• Coding Structure and Basics

2/21

Lecture Overview

Dynamic Programming and Investment

Essential Reading:

1. Adda and Cooper: Dynamic Economics: Quantitative Methods and

Applications - Chapter 1.

3/21

DP - Revisiting Investment

We will apply Dynamic Programming to the adjustment cost model.

The firm’s optimization problem is as follows:

max
Kt+1

E0

∞∑
t=0

βt

[
π(θt ,Kt)− (Kt+1 − (1− δ)Kt)−

ϕ

2
(Kt+1 − (1− δ)Kt)

2

]

where ϕ
2 I

2
t is the convex adjustment cost function, and we have substituted the

capital accummulation constraint for investments

It = Kt+1 − (1− δ)Kt

where K0 and θ0 is given.

This is a sequential constrained optimization problem. Your task is to find a

sequence of {Kt+1}∞t=0 that maximizes firm value subject to the capital

accumulation constraint.

4/21

Recursive Investment Problem

4/21

Revisiting Investment

The recursive functional equation of the adjustment cost model is given by the

Bellman equation as:

V (θ,K) = max
K ′

[
π(θ,K)− (K ′ − (1− δ)K)− ϕ

2
(K ′ − (1− δ)K)2 + βEV (θ′,K ′)

]
(1)

Transforms the problem to finding a function rather than a sequence.

• Value function - V (θ,K)

• Policy functions - K ′(θ,K) and I (θ,K).

• Expectation here is conditional on current state - E[.] = Eθ′|θ.

5/21

Productivity as a random variable

The variable θ is actually a time varying stochastic process, even though we

do not state it explicitly.

For example, θ could follow an autoregressive process of order one AR(1):

θt+1 = ρθt + ϵt+1, where ϵ ∼ N(0, 1)

Here the next period value, θ′, depends on its previous period value, θ, and a

random error normally distributed with mean zero and variance 1.

This is one way to model the unpredictable (random) evolution of technological

productivity/innovation.

6/21

Recursive Lagrangian with 1 Constraint

Recursive constrained optimisation:

V (θ,K) = max
K ′,I

{
π(θ,K)− I − ϕ

2
(I)2 + βEV (θ′,K ′)

}
(2)

s.t. K ′ = (1− δ)K + I

Recursive Lagrangian with single constraint:

L = π(θ,K)− I − ϕ

2
(I)2 + βEV (θ′,K ′)− q(K ′ − (1− δ)K − I)) (3)

7/21

Recursive Lagrangian with 1 Constraint

First order conditions (FOCs) (I,K ′) should be familiar!:

L = π(θ,K)− I − ϕ

2
(I)2 + βEV (θ′,K ′)− q(K ′ − (1− δ)K − I) (4)

[I] : −1− ϕI = q = 0 (5)

[K ′] βE
[
∂V (θ′,K ′)

∂K ′

]
− q = 0 (6)

[EC :]VK = πK (θ,K) + q(1− δ)

VK ′ = πK ′(θ′,K ′) + q′(1− δ) (7)

8/21

Recursive Lagrangian with 1 Constraint

First order conditions (FOCs) (I,K ′) should be familiar!:

Marginal Benefit = Marginal Cost (price and adjustment cost)

q = (1 + ϕI)

Marginal Benefit = Expected Marginal Value from profits over useful lifetime

q = βE
[
∂V (θ′,K ′)

∂K ′

]
= βE[πK ′(θ′,K ′) + q′(1− δ)]

9/21

Revisiting Investment

The firm manager solves the DP in eq. (1) by choosing the next period level of

capital K ′.

The solution is given by the FOC w.r.t K ′:

∂V (θ,K)

∂K ′ = 0

⇒ −(1 + ϕI) + βEVK ′(θ′,K ′) = 0

10/21

Investment Decision: MC = MB

Thus, the optimal investment decision is based on the following condition:

1 + ϕI︸ ︷︷ ︸
Marginal Cost

= βE[VK ′(θ′,K ′)]︸ ︷︷ ︸
Expected discounted marginal benefit

• The left side of this condition is the marginal cost of capital acccumulation

and includes the direct cost of buying capital and the marginal adjustment

cost.

• The right side indicates the expected and discounted marginal gains given

by the derivative (change) in the value of the firm.

The expected discounted marginal value of the firm is also the Marginal Q.

q = βE[VK ′(θ′,K ′)] = 1 + ϕI

11/21

Using Stationarity and Envelope Condition

We can take the derivative of today’s value function

∂V (θ,K)

∂K
= πK (θ,K) + (1− δ)(1 + ϕI) (8)

By stationarity, we can roll one period forward (the function itself doesnt move

around)

∂V (θ′,K ′)

∂K ′ = πK ′(θ′,K ′) + (1− δ)(1 + ϕI ′) (9)

Now we have the RHS as well

12/21

Investment Decision - Marginal Q

• Taking the derivative one period forward and substituting back in the FOC

we get the investment decision condition,

1 + ϕI = βE[πK ′(θ′,K ′) + (1− δ)(1 + ϕI ′)]

where subscripts denote partial derivatives and primes denote next period

values.

• In terms of marginal Q,

q = βE[πK ′(θ′,K ′) + (1− δ)q′]

• Marginal Cost today equals expected discounted additional profits

tomorrow and the value of non-depreciated capital priced at q’.

See why q can also be interpreted as the ”shadow price” or ”shadow

value” of capital.

13/21

Investment Decision - Expectation, Probabilities

• The manager needs to take into account productivity shocks, θ, when

deciding how much to invest, and they become an argument of the

value function.

• We use conditional expectations using a transition matrix of

probabilities:

Prob(θt+1 = θj |θt = θi) = Pij ; e.g . P(θH |θL) = PHL

• The manager thus weighs different possible scenarios in the future using

their associated probabilities and takes an average value of these.

Eθ′|θV (θ′,K ′) =
∑
θ′

P(θ′|θ)× V (θ′,K ′)

• The implication here is that its not just current productivity shocks that

impact firm value but also future uncertainty.

• See Mathematical Toolkit.pdf for more on transition matrices

14/21

Solving Recursive Models Numerically

14/21

Value Function Iteration: The Big Picture

Typical Functional Equation:

V (state) = max
choices

{
payoff + βEV (state′)

}
= T [V (state)] (10)

Bellman operator: everything we do on the right side 1: function in → function out

• Blackwell’s sufficient conditions power VFI on the computer:

(A1) Discounting: With β < 1, Bellman operator shrinks distance between functions

(A2) Monotonicity: Preserves rankings across functions V > W → T [V] > T [W]

(A1+2) guarantee unique fixed point in function-space exists: V ∗ = T [V ∗]

• Iteration Vn+1 = T [Vn] converges to V ∗ from any starting point

• VFI is just: V0 → T (V0) → T (T (V0)) → T (T (T (V0))) → ...

1you know some other operators already (eg) the derivative maps function 3x2 → 6x

15/21

Value Function Iteration: The Big Picture

The Algorithm:

1. Grids: Discretize state/action spaces, exogeneous state process P(s ′|s)
matrix

2. Guess initial V0. Some guesses are better than others!

3. Iterate: Vn+1(state) = maxchoice{payoff + βE [V (state′)]} = T (Vn)

4. Stop when ||Vn+1 − Vn|| < tolerance

16/21

Solution Method - Discretise, Grid Search

Set your grids and parameters first:

• Set scalar parameters, α, β, ..., etc .

• Productivity lives on a discrete grid z ∈ Z, with Nz points

• Capital will be chosen from a grid: (k , k ′) ∈ K = kgrid

• value function will have dimensions (Nz, Nk)

• You will need a matrix V and a matrix Vnew

• Set bounds on capital grid: kmin, kmax

• kgrid = linspace(kmin, kmax ,Nk), eg linspace(0.01, 50, 101)

• set convergence tolerances, eg tol = 1e-6 and maxiter = 500

• prefill you polices: policy kp = zeros(1,Nk), policy inv = zeros(1,Nk)

• Assume z ′ follows AR(1) process with transition probability matrix P

17/21

Solution Method - Discretise, Grid Search

Search for optimal policy. The grid is your menu of options.

• for each k ∈ K, need to find optimal k’ (which also lives in kgrid)

• let i denote loop index, ik, iz etc; let ikp be prime

for iz = 1:Nz

for ik = 1:Nk ...

• need to evaluate different choices of k’, and account for probability of

productivity process in βEz′|zV (z ′, k ′ ∈ kgrid)

• max can be done with loops to brute force a solution and ignore max

functions

18/21

Solution Method - Finding the optimal choice

For example, an investment model:

for all (z , k) ∈ Z ×K :

V (z , k) = max
k′∈K

{
zkα − (k ′ − (1− δ)k) + β

∑
z′

P(z ′|z)V (z ′, k ′)

}

• state var (k) lives on the kgrid

• state var (z) lives on the zgrid

• choice var (k ′) must be chosen from the same kgrid

⇒ Just a question of looping over all state space (z , k) and checking k ′ to

find k ′∗(z , k), and weighting with probabilities for z ′|z

19/21

Skeleton Code

19/21

while diff > tol iter < max iter

for ik = 1:Nk

for iz = 1:Nz

Vbest = -1e9 % initialize very low value

for ikp = 1:Nk

profit = zgrid(iz) * kgrid(ik)∧alpha

- kgrid(ikp) + (1-delta)*kgrid(ik)

%>> can add profit restriction here: if xyz

cont value = beta * sum(P(iz,:) .* V(:,ikp))

Vtemp = profit + cont value

if Vtemp > Vbest

Vbest = Vtemp

policy kp(iz,ik) = kgrid(ikp)

end

%>> end condition

end

Vnew(iz,ik) = Vbest

end

Vnew(iz, ik) = Vbest;

end

diff = max(abs(V(:) - Vnew(:)));

V = Vnew;

iter = iter + 1;

end 20/21

for all

(z,k) ∈ Z ×K :︸ ︷︷ ︸
theloops

V (z , k) = max
k′∈K

zkα − (k ′ − (1− δ)k)︸ ︷︷ ︸
profit

+β
∑
z′

P(z ′|z)V (z ′, k ′)︸ ︷︷ ︸
sun(P(iz,:)∗V (:,ikp))



21/21

	Recursive Investment Problem
	Numerical Methods
	Numerical Methods

