Dynamic Programming part 2
Investment, Finance and Asset Prices ECON5068

Thomas Walsh
Adam Smith Business School

1/21

Lecture Overview

e Dynamic Programming Recursive Formulations
e Investment Choice

e Coding Structure and Basics

2/21

Lecture Overview

Dynamic Programming and Investment

Essential Reading;:

1. Adda and Cooper: Dynamic Economics: Quantitative Methods and
Applications - Chapter 1.

3/21

DP - Revisiting Investment

We will apply Dynamic Programming to the adjustment cost model.
The firm's optimization problem is as follows:

maxEOZB [(0, Ke) — (Kes1 — (1 = 0)K:) — %(Kt+1 — (1 - 0)K;)?

t+1

where %Itz is the convex adjustment cost function, and we have substituted the
capital accummulation constraint for investments

It Kt+1 (1 - 5)Kt

where Ky and 6 is given.

This is a sequential constrained optimization problem. Your task is to find a
sequence of {Ki41}22, that maximizes firm value subject to the capital
accumulation constraint.

4/21

Recursive Investment Problem

4/21

Revisiting Investment

The recursive functional equation of the adjustment cost model is given by the
Bellman equation as:

V(0, K) = max |7(0, K) = (K" = (1= §)K) — %(K’ —(1-9)K)*+ BEV(¢',K)

(1)
Transforms the problem to finding a function rather than a sequence.

e Value function - V(0, K)
e Policy functions - K’(6, K) and (6, K).

e Expectation here is conditional on current state - E[.] = Eg/g.

5/21

Productivity as a random variable

The variable 6 is actually a time varying stochastic process, even though we
do not state it explicitly.

For example, # could follow an autoregressive process of order one AR(1):

9t+1 = p@t + €t4+1, where € ~ N(O, 1)

Here the next period value, ¢, depends on its previous period value, 6, and a
random error normally distributed with mean zero and variance 1.

This is one way to model the unpredictable (random) evolution of technological
productivity /innovation.

6/21

Recursive Lagrangian with 1 Constraint

Recursive constrained optimisation:
V(6. K) = max {w(o, K)—T— ?(z)2 + BEV(¢, K’)}

st. K=1-8)K+T

Recursive Lagrangian with single constraint:

L=n(6,K)—T— %(z)2 +BEV(, K') — q(K' — (1 - §)K — T))

)

®3)

7/21

Recursive Lagrangian with 1 Constraint

First order conditions (FOCs) (Z, K') should be familiar!:

L=n(0,K)—T— %(z)2 + BEV(0,K') — q(K' — (1 - §)K — T)

[Z]: -1-¢Z=q=0
/ V(o' K")
K] BE {T} —q=0

[EC Vi = 7x(6, K) + q(1 — 6)
Vi = 71';(/(9,7 K/) + q'(l — (5)

(4)

(5)

(6)

()

8/21

Recursive Lagrangian with 1 Constraint

First order conditions (FOCs) (Z, K') should be familiar!:

Marginal Benefit = Marginal Cost (price and adjustment cost)

q=(1+¢I)

Marginal Benefit = Expected Marginal Value from profits over useful lifetime

V(o' K')

q:m@[. } — BB (8, K') + (1 - 6)]

9/21

Revisiting Investment

The firm manager solves the DP in eq. (1) by choosing the next period level of
capital K’.

The solution is given by the FOC w.r.t K’:

OV(.K) _
oK

= —(14¢7)+ B]EVK/(G/, Kl) =0

10/21

Investment Decision: MC = MB

Thus, the optimal investment decision is based on the following condition:

1467 = BE[Vi(0',K")]
—— —_————

Marginal Cost Expected discounted marginal benefit

e The left side of this condition is the marginal cost of capital acccumulation
and includes the direct cost of buying capital and the marginal adjustment
cost.

e The right side indicates the expected and discounted marginal gains given
by the derivative (change) in the value of the firm.

The expected discounted marginal value of the firm is also the Marginal Q.

q = BE[Vic (0, K')] = 1 + 6T

11/21

Using Stationarity and Envelope Condition

We can take the derivative of today’s value function

% =k (0, K) + (1 — 8)(1 + ¢T) (8)

By stationarity, we can roll one period forward (the function itself doesnt move
around)

V(o' K"

e =m0, K + (1 -)(1+6T) (©)

Now we have the RHS as well

12/21

Investment Decision - Marginal Q

e Taking the derivative one period forward and substituting back in the FOC
we get the investment decision condition,

14 ¢T = BE[rx (0, K') + (1 = 8)(1 + ¢I")]

where subscripts denote partial derivatives and primes denote next period
values.

e In terms of marginal Q,
q = BE[rk (0", K') + (1 = 9)q]

e Marginal Cost today equals expected discounted additional profits
tomorrow and the value of non-depreciated capital priced at q'.
See why q can also be interpreted as the "shadow price” or "shadow
value” of capital.

13/21

Investment Decision - Expectation, Probabilities

e The manager needs to take into account productivity shocks, 6, when
deciding how much to invest, and they become an argument of the
value function.

e We use conditional expectations using a transition matrix of
probabilities:

Prob(0t+1 = Gj\ﬁt = 0,) = P,J, e.g. P(9H|9L) = PHL

e The manager thus weighs different possible scenarios in the future using
their associated probabilities and takes an average value of these.

EgoV(0',K') =Y P(0'|0) x V(6',K')
0/
e The implication here is that its not just current productivity shocks that
impact firm value but also future uncertainty.
e See Mathematical Toolkit.pdf for more on transition matrices

14/21

Solving Recursive Models Numerically

14/21

Value Function lteration: The Big Picture

Typical Functional Equation:

V(state) = max {payoff + BEV (state')} = T[V/(state)] (10)

choices

Bellman operator: everything we do on the right side : function in — function out
e Blackwell’s sufficient conditions power VFI on the computer:

(A1) Discounting: With 8 < 1, Bellman operator shrinks distance between functions

(A2) Monotonicity: Preserves rankings across functions V > W — T[V] > T[W]

(A14-2) guarantee unique fixed point in function-space exists: V* = T[V]

e lIteration V41 = T[V,] converges to V* from any starting point

e VFlisjust: Vo — T (Vo) = T(T (Vo)) = T(T(T(W))) — ...

lyou know some other operators already (eg) the derivative maps function 3x2 — 6x

15/21

Value Function lteration: The Big Picture

The Algorithm:

1. Grids: Discretize state/action spaces, exogeneous state process P(s'|s)
matrix

2. Guess initial V. Some guesses are better than others!

3. lterate: Vi i(state) = maxcpoice{ payoff + SE[V (state’)]} = T(V,)

4. Stop when ||V,11 — V,|| < tolerance

16/21

Solution Method - Discretise, Grid Search

Set your grids and parameters first:

e Set scalar parameters, o, (3, ..., etc.

e Productivity lives on a discrete grid z € Z, with N, points

e Capital will be chosen from a grid: (k, k') € K = kgrid

e value function will have dimensions (Nz, Nk)

e You will need a matrix V and a matrix Ve,

e Set bounds on capital grid: kmin, kmax

e kgrid = linspace (Kmin, kmax, Nk), eg linspace(0.01, 50, 101)

e set convergence tolerances, eg tol = le-6 and maxiter = 500

e prefill you polices: policy_kp = zeros(1,Nk), policy_inv = zeros(1,Nk)

e Assume z’ follows AR(1) process with transition probability matrix P

17/21

Solution Method - Discretise, Grid Search

Search for optimal policy. The grid is your menu of options.

e for each k € K, need to find optimal k' (which also lives in kgrid)
e let i denote loop index, ik, iz etc; let ikp be prime
for iz = 1:Nz
for ik = 1:Nk ...
e need to evaluate different choices of k', and account for probability of
productivity process in SE,,|,V(z', k" € kgrid)

e max can be done with loops to brute force a solution and ignore max
functions

18/21

Solution Method - Finding the optimal choice

For example, an investment model:

forall (z,k) € Zx K

ke

V(z, k) = max {zka — (K =(1=08)k)+ 8> P(ZI2)V(Z, k/)}

e state var (k) lives on the kgrid
e state var (z) lives on the zgrid
e choice var (k') must be chosen from the same kgrid

= Just a question of looping over all state space (z, k) and checking k' to
find k"™ (z, k), and weighting with probabilities for z’|z

19/21

Skeleton Code

19/21

while diff > tol iter < max_iter
for ik = 1:Nk
for iz = 1:Nz
Vbest = -1e9 % initialize very low value
for ikp = 1:Nk
profit = zgrid(iz) * kgrid(ik)”alpha
- kgrid(ikp) + (1-delta)*kgrid(ik)
%>> can add profit restriction here: if xyz
cont_value = beta * sum(P(iz,:) .* V(:,ikp))
Vtemp = profit + cont_value
if Vtemp > Vbest
Vbest = Vtemp
policy kp(iz,ik) = kgrid(ikp)
end

%>> end condition

end
Vnew(iz,ik) = Vbest
end
Vnew(iz, ik) = Vbest;
end
diff = max(abs(V(:) - Vnew(:)));
V = Vnew;

iter = iter + 1;

end

20/21

for all
(zk) €e Zx K

—_———
theloops

kel

V(z,k) = max ¢ zk® — (k' = (1= 6)k)+8 Y _ P('|2)V(Z'. K)

profit
sun(P(iz,:)*V(:,ikp))

21/21

	Recursive Investment Problem
	Numerical Methods
	Numerical Methods

