

Dynamic Programming part 2

Investment, Finance and Asset Prices ECON5068

Thomas Walsh

Adam Smith Business School

Lecture Overview

- Dynamic Programming Recursive Formulations
- Investment Choice
- Coding Structure and Basics

Lecture Overview

Dynamic Programming and Investment

Essential Reading:

1. **Adda and Cooper**: Dynamic Economics: Quantitative Methods and Applications - Chapter 1.

DP - Revisiting Investment

We will apply Dynamic Programming to the adjustment cost model.

The firm's optimization problem is as follows:

$$\max_{K_{t+1}} E_0 \sum_{t=0}^{\infty} \beta^t \left[\pi(\theta_t, K_t) - (K_{t+1} - (1-\delta)K_t) - \frac{\phi}{2} (K_{t+1} - (1-\delta)K_t)^2 \right]$$

where $\frac{\phi}{2}\mathcal{I}_t^2$ is the convex adjustment cost function, and we have substituted the capital accumulation constraint for investments

$$\mathcal{I}_t = K_{t+1} - (1 - \delta)K_t$$

where K_0 and θ_0 is given.

This is a sequential constrained optimization problem. Your task is to find a sequence of $\{K_{t+1}\}_{t=0}^{\infty}$ that maximizes firm value subject to the capital accumulation constraint.

Recursive Investment Problem

Revisiting Investment

The recursive functional equation of the adjustment cost model is given by the Bellman equation as:

$$V(\theta, K) = \max_{K'} \left[\pi(\theta, K) - (K' - (1 - \delta)K) - \frac{\phi}{2} (K' - (1 - \delta)K)^2 + \beta \mathbb{E} V(\theta', K') \right]$$

$$\tag{1}$$

Transforms the problem to finding a function rather than a sequence.

- Value function $V(\theta, K)$
- Policy functions $K'(\theta, K)$ and $I(\theta, K)$.
- Expectation here is conditional on current state $\mathbb{E}[.] = \mathbb{E}_{ heta' \mid heta}$.

Productivity as a random variable

The variable θ is actually a **time varying stochastic process**, even though we do not state it explicitly.

For example, θ could follow an **autoregressive process** of order one AR(1):

$$\theta_{t+1} = \rho \theta_t + \epsilon_{t+1}$$
, where $\epsilon \sim N(0, 1)$

Here the next period value, θ' , depends on its previous period value, θ , and a random error normally distributed with mean zero and variance 1.

This is one way to model the unpredictable (random) evolution of technological productivity/innovation.

Recursive Lagrangian with 1 Constraint

Recursive constrained optimisation:

$$V(\theta, K) = \max_{K', \mathcal{I}} \left\{ \pi(\theta, K) - \mathcal{I} - \frac{\phi}{2} (\mathcal{I})^2 + \beta \mathbb{E} V(\theta', K') \right\}$$

$$s.t. \quad K' = (1 - \delta)K + \mathcal{I}$$
(2)

Recursive Lagrangian with single constraint:

$$\mathcal{L} = \pi(\theta, K) - \mathcal{I} - \frac{\phi}{2}(\mathcal{I})^2 + \beta \mathbb{E}V(\theta', K') - q(K' - (1 - \delta)K - \mathcal{I}))$$
(3)

Recursive Lagrangian with 1 Constraint

First order conditions (FOCs) (\mathcal{I}, K') should be familiar!:

$$\mathcal{L} = \pi(\theta, K) - \mathcal{I} - \frac{\phi}{2} (\mathcal{I})^2 + \beta \mathbb{E} V(\theta', K') - q(K' - (1 - \delta)K - \mathcal{I})$$
 (4)

$$[\mathcal{I}]: \quad -1 - \phi \mathcal{I} = q = 0 \tag{5}$$

$$[K'] \quad \beta \mathbb{E} \left[\frac{\partial V(\theta', K')}{\partial K'} \right] - q = 0 \tag{6}$$

$$[EC:]V_K = \pi_K(\theta, K) + q(1 - \delta)$$

$$V_{K'} = \pi_{K'}(\theta', K') + q'(1 - \delta)$$
(7)

Recursive Lagrangian with 1 Constraint

First order conditions (FOCs) ($\mathcal{I}, \mathcal{K}'$) should be familiar!:

Marginal Benefit = Marginal Cost (price and adjustment cost)

$$q = (1 + \phi \mathcal{I})$$

 ${\sf Marginal\ Benefit} = {\sf Expected\ Marginal\ Value\ from\ profits\ over\ useful\ lifetime}$

$$q = \beta \mathbb{E}\left[\frac{\partial V(\theta', K')}{\partial K'}\right] = \beta \mathbb{E}[\pi_{K'}(\theta', K') + q'(1 - \delta)]$$

Revisiting Investment

The firm manager solves the DP in eq. (1) by choosing the next period level of capital K'.

The solution is given by the FOC w.r.t K':

$$\frac{\partial V(\theta, K)}{\partial K'} = 0$$
$$\Rightarrow -(1 + \phi \mathcal{I}) + \beta \mathbb{E} V_{K'}(\theta', K') = 0$$

Investment Decision: MC = MB

Thus, the optimal investment decision is based on the following condition:

$$\underbrace{1+\phi\mathcal{I}}_{ ext{Marginal Cost}} = \underbrace{\beta\mathbb{E}[V_{K'}(heta',K')]}_{ ext{Expected discounted marginal benefit}}$$

- The left side of this condition is the marginal cost of capital acccumulation and includes the direct cost of buying capital and the marginal adjustment cost.
- The right side indicates the expected and discounted marginal gains given by the derivative (change) in the value of the firm.

The expected discounted marginal value of the firm is also the Marginal Q.

$$q = \beta \mathbb{E}[V_{K'}(\theta', K')] = 1 + \phi \mathcal{I}$$

Using Stationarity and Envelope Condition

We can take the **derivative of today's** value function

$$\frac{\partial V(\theta, K)}{\partial K} = \pi_K(\theta, K) + (1 - \delta)(1 + \phi \mathcal{I}) \tag{8}$$

By **stationarity**, we can roll one period forward (the function itself doesnt move around)

$$\frac{\partial V(\theta', K')}{\partial K'} = \pi_{K'}(\theta', K') + (1 - \delta)(1 + \phi \mathcal{I}') \tag{9}$$

Now we have the RHS as well

Investment Decision - Marginal Q

 Taking the derivative one period forward and substituting back in the FOC we get the investment decision condition,

$$1 + \phi \mathcal{I} = \beta \mathbb{E}[\pi_{K'}(\theta', K') + (1 - \delta)(1 + \phi \mathcal{I}')]$$

where subscripts denote partial derivatives and primes denote next period values.

• In terms of marginal Q,

$$q = \beta \mathbb{E}[\pi_{K'}(\theta', K') + (1 - \delta)q']$$

 Marginal Cost today equals expected discounted additional profits tomorrow and the value of non-depreciated capital priced at q'.
 See why q can also be interpreted as the "shadow price" or "shadow value" of capital.

Investment Decision - Expectation, Probabilities

- The manager needs to take into account productivity shocks, θ, when deciding how much to invest, and they become an argument of the value function.
- We use conditional expectations using a transition matrix of probabilities:

$$Prob(\theta_{t+1} = \theta_j | \theta_t = \theta_i) = P_{ij}; \text{ e.g. } P(\theta_H | \theta_L) = P_{HL}$$

• The manager thus weighs different possible scenarios in the future using their associated probabilities and takes an average value of these.

$$\mathbb{E}_{\theta'|\theta}V(\theta',K') = \sum_{\theta'} P(\theta'|\theta) \times V(\theta',K')$$

- The implication here is that its not just current productivity shocks that impact firm value but also future uncertainty.
- See Mathematical Toolkit.pdf for more on transition matrices

Solving Recursive Models Numerically

Value Function Iteration: The Big Picture

Typical Functional Equation:

$$V(\textit{state}) = \max_{\textit{choices}} \left\{ \textit{payoff} + \beta \mathbb{E}V(\textit{state}') \right\} = \mathcal{T}[V(\textit{state})] \tag{10}$$

Bellman operator: everything we do on the right side 1 : function in \rightarrow function out

- Blackwell's sufficient conditions power VFI on the computer:
- (A1) **Discounting**: With β < 1, Bellman operator shrinks distance between functions
- (A2) Monotonicity: Preserves rankings across functions $V > W \rightarrow \mathcal{T}[V] > \mathcal{T}[W]$

(A1+2) guarantee unique **fixed point** in function-space exists:
$$V^* = \mathcal{T}[V^*]$$

- Iteration $V_{n+1} = \mathcal{T}[V_n]$ converges to V^* from any starting point
- VFI is just: $V_0 \to \mathcal{T}(V_0) \to \mathcal{T}(\mathcal{T}(V_0)) \to \mathcal{T}(\mathcal{T}(\mathcal{T}(V_0))) \to ...$

¹you know some other **operators** already (eg) the derivative maps function $3x^2 \rightarrow 6x$

Value Function Iteration: The Big Picture

The Algorithm:

- 1. **Grids**: Discretize state/action spaces, exogeneous state process P(s'|s) matrix
- 2. **Guess** initial V_0 . Some guesses are better than others!
- 3. Iterate: $V_{n+1}(state) = \max_{choice} \{payoff + \beta E[V(state')]\} = \mathcal{T}(V_n)$
- **4. Stop** when $||V_{n+1} V_n|| < \text{tolerance}$

Solution Method - Discretise, Grid Search

Set your grids and parameters first:

- Set scalar **parameters**, $\alpha, \beta, ..., etc$.
- Productivity lives on a discrete grid $z \in \mathcal{Z}$, with N_z points
- Capital will be chosen from a grid: $(k,k') \in \mathcal{K} = \mathtt{kgrid}$
- value function will have dimensions (Nz, Nk)
- You will need a matrix V and a matrix V_{new}
- Set bounds on capital grid: kmin, kmax
- kgrid = linspace(k_{min}, k_{max}, Nk), eg linspace(0.01, 50, 101)
- set convergence tolerances, eg tol = 1e-6 and maxiter = 500
- prefill you polices: policy_kp = zeros(1,Nk), policy_inv = zeros(1,Nk)
- Assume z' follows AR(1) process with transition probability matrix P

Solution Method - Discretise, Grid Search

Search for optimal policy. The grid is your menu of options.

- for each $k \in \mathcal{K}$, need to find optimal k' (which also lives in kgrid)
- let i denote loop index, ik, iz etc; let ikp be prime

```
for iz = 1:Nz
for ik = 1:Nk ...
```

- need to evaluate different choices of k', and account for probability of productivity process in $\beta E_{z'|z} V(z', k' \in \mathtt{kgrid})$
- max can be done with loops to brute force a solution and ignore max functions

Solution Method - Finding the optimal choice

For example, an investment model:

for all
$$(z, k) \in \mathcal{Z} \times \mathcal{K}$$
:
$$V(z, k) = \max_{k' \in \mathcal{K}} \left\{ zk^{\alpha} - (k' - (1 - \delta)k) + \beta \sum_{z'} P(z'|z)V(z', k') \right\}$$

- state var (k) lives on the kgrid
- state var (z) lives on the zgrid
- choice var (k') must be chosen from the same kgrid
- \Rightarrow Just a question of looping over all state space (z,k) and checking k' to find $k'^*(z,k)$, and weighting with probabilities for z'|z

Skeleton Code

```
while diff > tol iter < max iter
for ik = 1:Nk
 for iz = 1:Nz
    Vbest = -1e9 % initialize very low value
    for ikp = 1:Nk
      profit = zgrid(iz) * kgrid(ik)^alpha
            - kgrid(ikp) + (1-delta)*kgrid(ik)
      %>> can add profit restriction here: if xyz
      cont_value = beta * sum(P(iz,:) .* V(:,ikp))
     Vtemp = profit + cont_value
      if Vtemp > Vbest
       Vbest = Vtemp
        policy_kp(iz,ik) = kgrid(ikp)
      end
      %>> end condition
    end
    Vnew(iz,ik) = Vbest
 end
 Vnew(iz, ik) = Vbest:
end
diff = max(abs(V(:) - Vnew(:))):
V = Vnew;
iter = iter + 1:
```

end

$$(z,k) \in \mathcal{Z} \times \mathcal{K}$$
:

theloops

$$V(z,k) = \max_{k' \in \mathcal{K}} \left\{ \underbrace{zk^{\alpha} - (k' - (1-\delta)k)}_{profit} + \beta \underbrace{\sum_{z'} P(z'|z)V(z',k')}_{sun(P(iz,:)*V(:,ikp))} \right\}$$