
Dynamic Programming part 1

Investment, Finance, Asset Prices ECON5068

Thomas Walsh

Adam Smith Business School 1/37

Lecture Overview

• Dynamic Programming

• Wealth and Consumption Choice – A Cake Eating Problem

• Essential Reading:

- Adda and Cooper Dynamic Economics: Quantitative Methods and

Applications - Chapter 1. (See Moodle PDF)

- Gregory, Chow Dynamic Economics: Optimization by the Lagrange Method

- Chapter 2

2/37

Dynamic Programming

2/37

Dynamic Programming - Introduction

• In the last lecture, we used Lagrange multipliers to solve the

optimisation problem of the firm.

• Dynamic Programming is an alternate method that can be used to solve

optimisation problems.

• Developed in the 1940s by Richard Bellman at RAND Corporation

• Solves multistage decision-making problems by decomposing into smaller

subproblems

• The approach is different yet gives an identical solution

• The name was chosen to avoid words like “research, planning” but still

related to decision making, hence the credibility of “Dynamic” from

Physics with the somewhat uninformative “Programming”

• something like Chained Decomposition Solution Method might make

more sense

3/37

Dynamic Programming - Introduction

• Dynamic Programming is popular since it is easy to implement

numerically with a computer.

• Widely used across Econ, Finance, Compuster Science, Operations,

Engineering, Game Theory, Machine Learning ... basically any quantitative

field

• Most modern macro(-finance) models written in recursive (self-similar)

form, essential tool

• We will learn dynamic programming using an example: Eating a Cake

4/37

Eating a Cake

4/37

Dynamic Programming with Cake-Eating Example

• Suppose you have a cake of size W1, your wealth. You have T periods

to consume this cake.

• Every period t = 1, 2...T you consume some of the cake and save the

rest. The initial size of the cake at t = 1 is W1.

• Assume that the cake cannot melt (depreciate) or grow.

• Let ct represent the consumption of cake at time t and u(ct) the flow of

utility (satisfaction) from this consumption.

• Assume u(.) is real-valued, continuous, differentiable and concave and

consumption should always be non-negative.

• Examples: c0.5, ln(c), c1−σ

1−σ . Might need to be careful with negative u in

context

5/37

Example of Utility Function

0 1 2 3 4 5
0

1

2

3

Consumption, c

u
ti
lit
y
of

co
n
su
m
p
ti
on

,
u
(c
)

• increasing and concave (the next piece is not as good as the last)

6/37

Preferences

• The life-time utility from consuming the cake is given by the discounted

sum of all current and future utility of consumption:

u(c1) + βu(c2) + β2u(c3) + ...+ βT−1u(cT) (1)

• That is,

T∑
t=1

βt−1u(ct) (2)

where 0 ≤ β ≤ 1 is the discount factor, a measure of (im)patience.

7/37

Law of Motion of Cake

• The evolution of cake size (a.k.a law of motion) every period is given by::

Wt+1 = Wt − ct (3)

Problem: How would you find the optimal path of consumption {ct}Tt=1

• In other words, what is the level of consumption every period that

maximizes your lifetime utility in equation (2) above.

• We are looking for a consumption plan for all periods jointly: {ct}Tt=1.

8/37

Cake-Eating Example - Sequential Lagrangian Approach

• One approach is to use the method of Lagrange multipliers.

• This is then a constrained optimization problem where:

max
{ct ,Wt+1}T

t=1

[
T∑
t=1

βt−1u(ct)

]

• subject to the constraint:

Wt+1 = Wt − ct

for all t = 1, 2, . . .T .

9/37

Cake-Eating Example - Sequential Lagrangian Approach

The Lagrangian function can be written as:

L =
T∑
t=1

βt−1 [u(ct)− λt(Wt+1 −Wt + ct)]

Note: This is a dynamic optimization problem, we have an objective function

and a constraint at every period t. All future values need to be discounted.

L =
[
u(c1) + βu(c2) + ...+ βt−1u(ct) + ...

− λ1(W2 −W1 + c1)− βλ2(W3 −W2 + c2)...

− βt−1λt(Wt+1 −Wt + ct)− βtλt+1(Wt+2 −Wt+1 + ct+1)... (4)

Remember! Like the Tobin model, we have to check for t + 1-variables in two

places

10/37

Cake-Eating Example - Sequential Lagrangian Approach

The necessary condition for maximizing this lagrangian function is given by the

three FOCs:
∂L

∂ct
= 0 ⇒ u′(ct) = λt

∂L

∂Wt+1
= 0 ⇒ λt = βλt+1

∂L

∂λt
= 0 ⇒ Wt+1 = Wt − ct

11/37

Cake-Eating Example - Euler Equation Intuition

• From eqs (1), (2), we get the Euler equation, intertemporal optimality

condition:

u′(ct) = βu′(ct+1) (EE)

• LHS represents the marginal loss in utility when you sacrifice a small

unit of consumption and the RHS is the discounted marginal gain in

utility from this extra unit of consumption next period.

• If the Euler equation holds, then it is impossible to increase utility by

moving consumption across adjacent periods given a candidate solution

{c̃t}T1 = {c∗t }T1 .

• No Abitrage condition: +βuc,t+1dc − uc,tdc = 0 or

−βuc,t+1dc + uc,tdc = 0 depending on which way transfer consumption

(small dc)

12/37

Euler Equation links periods (t, t + 1)

• From eqs (1), (2), we get the Euler equation, intertemporal optimality

condition, for t = 1, ...,T − 1:

u′(ct) = βu′(ct+1)

• Example: if u(c) = ln(c) implies a (negative) growth path:

1

ct
= β

1

ct+1
⇒ ct+1 − ct

ct
= (% Growth in c) = −(1− β)

• Euler Equation makes a chain of pairs:

(c1, c2), (c2, c3), (c3, c4), ..., (c99, c100) (5)

(c1, βc1), (βc1, β
2c1), (β

2c1, β
3c1), ..., (β

98c1, β
99c1) (6)

ct = βt−1c1 (7)

But we don’t yet know c1. Once we solve for that, we get the full chain

13/37

Euler Equation links periods (t, t + 1)

ct ct+1 ct+2 ct+3

uc(ct) = βuc(ct+1)

uc(ct+1) = βuc(ct+2)

uc(ct+2) = βuc(ct+3)

14/37

Cake-Eating Example - Sequential Lagrangian Approach

Since this is a finite time horizon problem, we need to have a terminal

condition.

For maximum utility, there should not be any cake left over at the end of the

last period (no waste). That is,

WT+1 = 0 (END)

This terminal condition naturally implies that the sum of consumption across all

periods should equal the total size of the cake (resource constraint, RC):

T∑
t=1

ct = W1 (e.g . = 100) (RC)

Using the value of W1 (RC) and eq.s (EE) and (END), we can find the optimal

path of consumption {c∗t }Tt=1 that maximizes utility.

15/37

For log-utility we can use pen and paper

We can plug the Euler Equation bridges into consumption, and use RC:

T∑
t=1

ct = W1 ⇒
T∑
t=1

βt−1c1 = W1

We can arrange the sum:

c1(1 + β + β2 + ...+ βT−1) = W1

This is a geometric sum, we know from the toolkit how to solve this:

c1
(1− βT)

1− β
= W1

Solving for c as a function of parameters for patience and total periods:

c1 =
(1− β)

1− βT
W1

And this nests the well-known infinite horizon solution (T → ∞)

ct = (1− β)Wt ∀t

Consume (e.g.) 5 percent of remaining cake (like every period is like the start)16/37

Time for Some Drawing!

17/37

Consumption and Wealth Sequences

Blue line: impatient; Purple: patient

Figure 1: {Wt+1, ct}T=20
t=1 , W1 = 100, u(c) = c1−σ

1−σ

Wt+2 = (1 + β1/σ)Wt+1 − (β1/σ)Wt ; given WT+1 = 0;W1 = 100

18/37

Cake-Eating Example - Value Function

• The solution to this T -period cake eating problem is found by substituting

the optimal path of consumption in the lifetime utility function.

• We will denote this maximum as V T (W1):

V T (W1) = max

[
T∑
t=1

βt−1u(ct)

]
=

T∑
t=1

βt−1u(c∗t)

• V (W1) is called as a value function and here it represents the maximum

T period utility of consumption given an initial level of cake size W1.

19/37

Cake-Eating Example - Dynamic Programming Approach

• Suppose we change this cake eating problem by adding a period 0 and

giving an initial cake size of W0.

• We can again solve this by formulating a new Lagrangian for the T + 1

period problem.

• However, a better way would be to somehow make use of the T period

solution that we found, V T (W1) to create V T+1(W0)

• Dynamic Programming (DP) provides means for doing this.

• DP essentially converts a general T period problem into a 2 period

one.

20/37

Cake-Eating Example - Dynamic Programming Approach

• DP breaks down the optimal path into two parts, what is optimal today

and the optimal continuation path.

• Given W0, the optimization problem can be written as:

V T+1(W0) = max
{ct ,Wt+1}T

t=0

[
T∑
t=0

βtu(ct)

]
(8)

= max
{ct ,Wt+1}T

t=0

[
u(c0) +

T∑
t=1

βtu(ct)

]

= max
{ct ,Wt+1}T

t=0

[
u(c0) + β

T∑
t=1

βt−1u(ct)

]

= max
c0,W1

[
u(c0) + β max

{ct ,Wt+1}T
t=1

[
T∑
t=1

βt−1u(ct)

]]
V T+1(W0) = max

c0,W1

[
u(c0) + βV T (W1)

]
(9)

note: calendar time isn’t important per se, how much time left matters! 21/37

Cake-Eating Example - Dynamic Programming Approach

• Subject to the constraint

W1 = W0 − c0

• Note V T here denotes value function for the T -periods-left model not

value function at time T !!! Best to think of this as V T
t ,V T−1

t+1 for some

time t.

• In terms of time-t/calendar-time notation, the general Bellman

equation is:

Vt(Wt) = max
ct ,Wt+1

{
u(ct) + βVt+1(Wt+1)

}
where t = 0, 1, . . .T .

• This is a functional equation - the unknown is now a function V .

- depends on cake left W0

- and number of periods left T + 1

22/37

Cake-Eating Example - Dynamic Programming Approach

• So instead of choosing the entire path of ct , we are just choosing c0.

• The rest of the path is optimally determined by the value function,

V T (W1).

• Once c0 and hence W1 is determined, the value function summarizes the

rest of the problem

• This is the principle of optimality due to Richard Bellman: we can

represent the full dynamic problem as a sequence of recursive 2 period

problems:

• Optimal Today + Optimal Continuation Path (we know we will be

optimising!)

23/37

Cake-Eating Example - Dynamic Programming Approach

• The Bellman equation for the cake eating problem is then written as

Vt(W0) = max
ct ,Wt+1

[u(ct) + βVt+1(W1)]

where t = 0, 1, . . .T . Here Vt is the value function at any time t and Vt+1

is the value function for the next period t + 1.

• The solution to this problem is given by the decision rules (functions)

for consumption and next period cake size: ct(Wt) and Wt+1(Wt).

• To obtain these decision rules, we need to find the unknown value

function Vt(Wt).

• Since this is a finite horizon problem, we can achieve this task easily. Start

with the last period T where VT+1 = 0 and work backwards to obtain all

the other value functions and decision rules.

24/37

Cake-Eating Example - Dynamic Programming Approach

Substituting for Wt+1 from the constraint, we can write eq. (7) as:

Vt(Wt) = max
ct

[u(ct) + βVt+1(Wt − ct)]

The first order condition of this value function problem [EC] is given by:

u′(ct) = βV ′
t+1(Wt − ct)

Denote the solution to the problem, optimal consumption by c∗t = ht(Wt).

Then the value function is

Vt(Wt) = [u(ht(Wt)) + βVt+1(Wt − ht(Wt))]

Taking the derivative w.r.t Wt , we get the Envelope condition1

V ′
t (Wt) =

[
u′(ht(Wt))h

′
t(Wt) + βV ′

t+1(·)[1− h′t(Wt)]
]

(10)

= u′(ct) (11)

1borrow the FOC for the second term sub

25/37

Cake-Eating Example - Dynamic Programming Approach

• Value is defined by Wt cake size today, and number of periods left T ,

not by when we start the process (Wednesday, Thursday, Friday)...

V (a) = Vt(a) = Vt+1(a) for some number a

• Taking one period forward, with stationarity of the value function:

V ′
t+1(Wt+1) = u′(ct+1)

• The FOC along with the above envelope condition together imply the Euler

equation,

u′(ct) = βu′(ct+1) for t = 0, 1, 2, . . .T − 1

Recursive Dynamic Programming Solution = Sequential Lagrangian

Solution

26/37

Infinite Horizon

26/37

Cake-Eating Example - Infinite Horizon

• Suppose we allow the horizon to go to infinity.

• As before, one can consider solving the infinite horizon sequence problem

given by:

max
{ct ,Wt+1}∞

0

∞∑
t=0

βtu(ct)

along with the transition equation of

Wt+1 = Wt − ct

for t = 0, 1, 2, . . .∞ and some given W0 > 0.

27/37

Infinite Horizon - Dynamic Programming

• Since the time horizon is infinite, the future from today and the future

from tomorrow is of the same length (which is infinity).

• Value function is not a function of the time period, but only of the cake

size.

• The value function for the infinite horizon case is

V (Wt) = max
{ct ,Wt+1}∞

0

∞∑
t=0

βtu(ct)

28/37

Infinite Horizon - Dynamic Programming

We can form the Bellman equation by breaking down this infinite sequence

into a recursive two-period problem:

V (Wt) = max
{ct ,Wt+1}∞

0

∞∑
t=0

βtu(ct) (12)

= max
{ct ,Wt+1}∞

0

[
u(c0) +

∞∑
t=1

βtu(ct)

]
(13)

= max
c0,W1

[
u(c0) + max

{ct ,Wt+1}∞
1

∞∑
t=1

βtu(ct)

]
(14)

= max
c0,W1

[
u(c0) + β max

{ct ,Wt+1}∞
1

∞∑
t=0

βtu(ct+1)

]
(15)

V (Wt) = max
c0,W1

[u(c0) + βV (Wt+1)] (16)

e.g. V (100) = u(10) + βV (100− 10)

29/37

Infinite Horizon - Dynamic Programming

• So the infinite horizon dynamic programming problem is

V (W) = max
c,W ′

{
u(c) + βV (W ′)

}
for all W (17)

s.t. W ′ = W − c (18)

• Variables with prime denote future values2.

• V (W) is the value of the infinite horizon cake eating problem or the

maximal utility from this consumption.

• W ′ = W − c is the state transition equation or equivalently the

evolution of cake size.

2not to be confused with derivatives, that is W denotes Wt and W ′ denotes Wt+1

30/37

Infinite Horizon - Remarks

• In general, we use primes to denote future values when we are looking for

a stationary solution to an infinite horizon problem.

• The value function here is stationary, that is:

Vt(W) = Vt+k(W) = V (W) for any k > 0

• Stationarity means time-invariant, that is the value function or policy

functions are optimal and do not change with time.

• Remember these functions denote a path or a rule, so stationarity here

means that this path is constant (not the actual variable).

31/37

Infinite Horizon - Remarks

• The two policy functions maps the state variables to controls (choices).

• In this problem, the two policy functions are:

W ′(W) and c(W)

next period cake size and consumption.

• State = Sufficient knowing W is sufficient to summarize all the data we

need for our problem. W is therefore, the state variable

• If I know V (W): tell me W and I will tell you how much to consume and

to save

32/37

Infinite Horizon - State and Control Variables

• What are the state and control (choice) variables?

• The state variable is the size of the cake (W) that is given at the start of

any period.

• The cake size completely summarizes all information from the past that is

needed for the forward looking optimization problem.

• The control variable is the variable that is being chosen. In this case, it

is the level of consumption in the current period, c and next period cake

size W ′.

• The transition (or the constraint) desribes the dependence of the state

tomorrow on the state today and the control today:

W ′ = W − c

33/37

Infinite Horizon - State and Control Variables

• Alternatively, we can write the DP, in (10), as:

V (W) = max
W ′

{
u(W −W ′) + βV (W ′)

}
where we have substituted the constraint so that we have to choose only

tomorrow’s cake size.

• Either specification will yield the same result. Fewer choice variables

are easier to work with.

• This expression is a functional equation and is often called a Bellman

equation after Richard Bellman, the originator of dynamic programming.

• Note that the unknown in the Bellman equation is the value function

itself: the idea is to find a function V (W) that satisfies this condition for

all W .

34/37

Items for Review

• Sequential Lagrangian

• Shadow Price

• Consumption/Saving with no production, depreciation

• Sequential solution with Euler Equation

• Finite Horizon

• Recursive Approach

• Bellman Equation

• Continuation Value

• Infinite Horizon

• State and Choice/Control Variables

34/37

Appendix: For all the rest: Shooting Algorithm

1. Initial Condition: Start with W1, e.g. 100.

2. Update: Use Euler Equation in terms of cake, second-order difference

eqn:

uc(Wt −Wt+1) = βuc(Wt+1 −Wt+2)

3. Rearrange, and guess W2:

Wt+2 = Wt+1 − u−1
c ((1/β)uc(Wt −Wt+1))

4. Start: We have W1, guess W2, this implies W3. Then we can roll forward

to get W4,,WT+1. This is the first shot. Aim for zero.

5. Terminal condition Adjust guess W2, keep shooting until WT+1 ≈ 0.

6. Optimal Consumption path: Ct = Wt−1 −Wt

• Fast numerical methods in matlab, julia etc to solve (Bisection!)

• One can also do a reverse shot: We know WT+1 = 0, guess WT to imply

WT−1, ...,W1, and aim for starting W1 = 100.

35/37

Recursive model solution(s) 1: constraint substituted

Derivative w.r.t W ′:

V (W) = max
W ′

{
u(W −W ′) + βV (W ′)

}
(19)

[W ′ :] − uc(W −W ′) + β

(
∂V (W ′)

∂W ′

)
= 0 (FOC)

We can use the envelope condition and roll forward one period for the

derivative

[EC :] VW (W) = uc(W −W ′) = uc(c) (20)

⇒ VW ′(W ′) = uc(W
′ −W ′′) = uc(c

′) (21)

Combined:

uc(c) = βuc(c
′) (22)

36/37

Recursive model solution(s) 2: constraint explicit

V (W) = max
c,W ′

{
u(c) + βV (W ′)

}
s.t. c +W ′ = W (23)

We can still build a recursive Lagrangian with one (1!) constraint

L = u(c) + βV (W ′)− λ(c +W ′ −W)

FOCs wrt (c,W ′):

[c :] uc(c)− λ = 0 (24)

[W ′ :] β

(
∂V (W ′)

∂W ′

)
− λ = 0 (25)

Envelope Condition again (we can ignore indirect effects)

[EC :]
∂V (W)

∂W
=

∂L
∂W

= λ;
∂V (W ′)

∂W ′ = λ′ (26)

Combined:

uc(c) = βuc(c
′) (27)

37/37

	Dynanmic Programming
	Cake Eating Problem
	Recursive Approach
	Infinite Horizon
	Topic for Review

