Dynamic Programming part 1
Investment, Finance, Asset Prices ECON5068

Thomas Walsh
Adam Smith Business School

1/37

Lecture Overview

e Dynamic Programming

e Wealth and Consumption Choice — A Cake Eating Problem

e Essential Reading:
- Adda and Cooper Dynamic Economics: Quantitative Methods and
Applications - Chapter 1. (See Moodle PDF)
- Gregory, Chow Dynamic Economics: Optimization by the Lagrange Method
- Chapter 2

2/37

Dynamic Programming

2/37

Dynamic Programming - Introduction

In the last lecture, we used Lagrange multipliers to solve the
optimisation problem of the firm.

Dynamic Programming is an alternate method that can be used to solve
optimisation problems.

Developed in the 1940s by Richard Bellman at RAND Corporation

Solves multistage decision-making problems by decomposing into smaller
subproblems

The approach is different yet gives an identical solution

The name was chosen to avoid words like “research, planning” but still
related to decision making, hence the credibility of “Dynamic”’ from
Physics with the somewhat uninformative “Programming”

something like Chained Decomposition Solution Method might make
more sense

3/37

Dynamic Programming - Introduction

e Dynamic Programming is popular since it is easy to implement
numerically with a computer.

e Widely used across Econ, Finance, Compuster Science, Operations,
Engineering, Game Theory, Machine Learning ... basically any quantitative
field

e Most modern macro(-finance) models written in recursive (self-similar)
form, essential tool

e We will learn dynamic programming using an example: Eating a Cake

4/37

Eating a Cake

4/37

Dynamic Programming with Cake-Eating Example

e Suppose you have a cake of size W, your wealth. You have T periods
to consume this cake.

e Every period t =1,2...T you consume some of the cake and save the
rest. The initial size of the cake at t =1 is Wj.

o Assume that the cake cannot melt (depreciate) or grow.

e Let ¢ represent the consumption of cake at time t and u(c;) the flow of
utility (satisfaction) from this consumption.

e Assume u(.) is real-valued, continuous, differentiable and concave and
consumption should always be non-negative.

-

e Examples: ¢%5,/n(c), 1_;. Might need to be careful with negative u in

context

5/37

Example of Utility Function

3

N

[y

utility of consumption, u(c)

| | | |
0 0 1 2 3 4 5

Consumption, ¢

e increasing and concave (the next piece is not as good as the last)

6/37

Preferences

e The life-time utility from consuming the cake is given by the discounted
sum of all current and future utility of consumption:

u(cr) + Bu(c) + BPu(cs) + ...+ BT tu(er) (1)
e That is,
.
> B u(e) (2)

where 0 < 8 < 1 is the discount factor, a measure of (im)patience.

7/37

Law of Motion of Cake

e The evolution of cake size (a.k.a law of motion) every period is given by::
Wt+1 = Wl’ - Ct (3)

Problem: How would you find the optimal path of consumption {c:}/. ;

e In other words, what is the level of consumption every period that
maximizes your lifetime utility in equation (2) above.

e We are looking for a consumption plan for all periods jointly: {c:}/. ;.

8/37

Cake-Eating Example - Sequential Lagrangian Approach

e One approach is to use the method of Lagrange multipliers.

e This is then a constrained optimization problem where:

max [Z ﬁt_lu(ct)]

{C:7Wt+1};r:1 =1
e subject to the constraint:
Wipi =W — ¢

forall t=1,2,...T.

9/37

Cake-Eating Example - Sequential Lagrangian Approach

The Lagrangian function can be written as:
E Zﬁt 1 [U (Wt+1 Wt + Ct)]
Note: This is a dynamic optimization problem, we have an objective function

and a constraint at every period t. All future values need to be discounted.

L =[u(c) + Bu(c) + ... + B u(ce) + ...
—M(Wo = Wi+ c1) = BAa(Ws — Wa + o).
= BTN (Wes = Wi + c) = B X1 (We2 = Werr + 1) (4)

Remember! Like the Tobin model, we have to check for t + 1-variables in two
places

10/37

Cake-Eating Example - Sequential Lagrangian Approach

The necessary condition for maximizing this lagrangian function is given by the

th FOCs:

-] ﬁ—O:>u’(c)—)\
e t) = At
oL

Wes 0=\t = BAti1
oL

37&:0: Wiy1 = W — ¢

11/37

Cake-Eating Example - Euler Equation Intuition

From eqs (1), (2), we get the Euler equation, intertemporal optimality
condition:

v (e) = Bu(cen) | (EE)

e LHS represents the marginal loss in utility when you sacrifice a small
unit of consumption and the RHS is the discounted marginal gain in
utility from this extra unit of consumption next period.

e If the Euler equation holds, then it is impossible to increase utility by
moving consumption across adjacent periods given a candidate solution

{Et}lT = {Ct*}lT

e No Abitrage condition: +Suc 1dc — uc dc =0 or
—fuc r+1dc + uc rdc = 0 depending on which way transfer consumption
(small dc)

12/37

Euler Equation links periods (t,t + 1)

e From egs (1), (2), we get the Euler equation, intertemporal optimality
condition, for t =1,..., T — 1:

v'(c) = Bu'(cenn) |

o Example: if u(c) = In(c) implies a (negative) growth path:

1 1 —
= =3 = ST (9 Growth in ¢) = —(1 — f)
Ct Ct+1 Ct

e Euler Equation makes a chain of pairs:

(c1, @), (2, c3),(c3,€4), -, (Co9, C100) (5)
(C175C1)a (5C1, 52C1)7 (52C1753C1), s (598C17ﬁ99C1) (6)
a=p"a (7)

But we don't yet know c;. Once we solve for that, we get the full chain

13/37

Euler Equation links periods (t,t + 1)

Uc(ct) = Buc(CtJrl) Uc(Ct+2) = Buc(ct+3)

uc(cer1) = Buc(ces2)

14/37

Cake-Eating Example - Sequential Lagrangian Approach

Since this is a finite time horizon problem, we need to have a terminal
condition.

For maximum utility, there should not be any cake left over at the end of the
last period (no waste). That is,

Wry =0 (END)

This terminal condition naturally implies that the sum of consumption across all
periods should equal the total size of the cake (resource constraint, RC):

Z ¢ = W (e.g. = 100) (RO)

Using the value of W4 (RC) and eq.s (EE) and (END), we can find the optimal
path of consumption {c;}[_; that maximizes utility.

15/37

For log-utility we can use pen and paper

We can plug the Euler Equation bridges into consumption, and use RC:

T T
th = W1 = Zﬁt_lcl = W1
t=1 t=1

We can arrange the sum:
a(l++/+..+87) =W

This is a geometric sum, we know from the toolkit how to solve this:

(1-587)
P) w
G 1-3 1
Solving for ¢ as a function of parameters for patience and total periods:
1—
(-5
1-p8T7
And this nests the well-known infinite horizon solution (T — o0)

Ct:(l_ﬁ)Wt Vt

Wi

Consume (e.g.) 5 percent of remaining cake (like every period is like the start /37

Time for Some Drawing!

17/37

Consumption and Wealth Sequences

Blue line: impatient; Purple: patient

Wealth, {Wy, ... Wy} Consumption, {C1,....Cr}

100 10
—— 3 =080
—0.90
20 3 0.95
—0.99
—— Perfect Split
g
- 60 = 6
= &
g g
= Z
= 40 g 4
&)
20 2
0 0
5 10 15 20 5 10 15 20
time, t time, t

l1—o

Figure 1: {W;i1, ¢}/ 5%, Wi =100, u(c) = ¢

-0

Wiio = (14 BY YWyt — (BY7)W;; given Wr iy = 0; W, = 100

18/37

Cake-Eating Example - Value Function

e The solution to this T-period cake eating problem is found by substituting
the optimal path of consumption in the lifetime utility function.

e We will denote this maximum as VT (W;):

VT(W;) = max lz ﬁtlu(ct)l = Zﬁtflu(c:)

t=1 t=1

e V(W) is called as a value function and here it represents the maximum
T period utility of consumption given an initial level of cake size Wj.

19/37

Cake-Eating Example - Dynamic Programming Approach

e Suppose we change this cake eating problem by adding a period 0 and
giving an initial cake size of W,.

e We can again solve this by formulating a new Lagrangian for the T + 1
period problem.

e However, a better way would be to somehow make use of the T period
solution that we found, VT(W;) to create VT +1(W)

e Dynamic Programming (DP) provides means for doing this.

e DP essentially converts a general T period problem into a 2 period
one.

20/37

Cake-Eating Example - Dynamic Programming Approach

e DP breaks down the optimal path into two parts, what is optimal today
and the optimal continuation path.
e Given Wy, the optimization problem can be written as:

[7
VTH(G) = max Zﬁfu(ct)] (8)

{Cr-,Werl}tho t—0

{ct, Wt+1}tT:o

= max u(co) + Zﬂtu(ct)]

T
= max u(co) +BZﬁt_1U(Ct)]

T
{Cr; Wt+1}t:0 =1

o, Wi {ce, Wi},

.
= max [u(co) + B max [Btlu(ct)H

t—1
VTH(Wo) = mae [u(er) + 5V (W) ©)

note: calendar time isn't important per se, how much time left matters! 21/37

Cake-Eating Example - Dynamic Programming Approach

Subject to the constraint
W1 = WO — Qo

Note VT here denotes value function for the T-periods-left model not
value function at time T!!l Best to think of this as VT, thr]l for some
time t.

In terms of time-t/calendar-time notation, the general Bellman
equation is:

Vi(W;) = max {U(Ct)+5Vt+1(Wt+1)}

ct, Wi

where t =0,1,...T.
This is a functional equation - the unknown is now a function V.

- depends on cake left W
- and number of periods left T + 1

22/37

Cake-Eating Example - Dynamic Programming Approach

e So instead of choosing the entire path of ¢;, we are just choosing cg.

e The rest of the path is optimally determined by the value function,
vT(w).

e Once ¢y and hence W is determined, the value function summarizes the
rest of the problem

e This is the principle of optimality due to Richard Bellman: we can
represent the full dynamic problem as a sequence of recursive 2 period

problems:

e Optimal Today + Optimal Continuation Path (we know we will be
optimising!)

23/37

Cake-Eating Example - Dynamic Programming Approach

The Bellman equation for the cake eating problem is then written as

Vi(Wo) = max [u(ct) + BViey1(WA)]

€, Wi

where t =0,1,... T. Here V; is the value function at any time t and V;.;
is the value function for the next period t + 1.

e The solution to this problem is given by the decision rules (functions)
for consumption and next period cake size: ¢;(W;) and W, 1 (W;).

e To obtain these decision rules, we need to find the unknown value
function V,(W;).

e Since this is a finite horizon problem, we can achieve this task easily. Start
with the last period T where V7,1 = 0 and work backwards to obtain all
the other value functions and decision rules.

24/37

Cake-Eating Example - Dynamic Programming Approach

Substituting for W;1 from the constraint, we can write eq. (7) as:

V(W) = mc?x [u(er) + BViep1(We —)]

The first order condition of this value function problem [EC] is given by:
u'(ce) = BV (We — c)

Denote the solution to the problem, optimal consumption by ¢; = h,(W;).
Then the value function is

Vi(We) = [u(he(Wr)) + BVipa(We — he(Wh))]

Taking the derivative w.r.t W, we get the Envelope condition®
VI(We) = [u'(he(We))he(We) + BV ()L — hi(Wa)]] (10)
= U/(Ct) (11)

Iborrow the FOC for the second term sub

Cake-Eating Example - Dynamic Programming Approach

e Value is defined by W; cake size today, and number of periods left T,
not by when we start the process (Wednesday, Thursday, Friday)...

V(a) = Vi(a) = Viti(a) for some number a

e Taking one period forward, with stationarity of the value function:

Vt/+1(Wt+1) = U/(Ct+1)

e The FOC along with the above envelope condition together imply the Euler
equation,

U(ct) =Bu'(cey1) fort=0,1,2,... T — 1‘

Recursive Dynamic Programming Solution = Sequential Lagrangian
Solution

26/37

Infinite Horizon

26/37

Cake-Eating Example - Infinite Horizon

e Suppose we allow the horizon to go to infinity.

e As before, one can consider solving the infinite horizon sequence problem
given by:
o0

max Zﬁtu(ct)

{ct, W1 }§° —o

along with the transition equation of
Wip1 = We — ¢

for t =0,1,2,...00 and some given W, > 0.

27/37

Infinite Horizon - Dynamic Programming

e Since the time horizon is infinite, the future from today and the future
from tomorrow is of the same length (which is infinity).

e Value function is not a function of the time period, but only of the cake
size.

e The value function for the infinite horizon case is

V(W) = ‘
(W) {c,7W?+f}$;oﬂ u(cr)

28/37

Infinite Horizon - Dynamic Programming

We can form the Bellman equation by breaking down this infinite sequence
into a recursive two-period problem:

VI = s Z/Bt “e) v
= B [““O”Zﬁf““f’] "
- o e+ ZW“] "
V(W,) = max [u(co) +5V(Wt+1)] (16)

e.g. V(100) = u(10) + BV/(100 — 10)

29/37

Infinite Horizon - Dynamic Programming

e So the infinite horizon dynamic programming problem is

V(W) = max {u(c) + BV(W’)} for all W (17)
st. W=W-—c (18)

Variables with prime denote future values?.

V(W) is the value of the infinite horizon cake eating problem or the
maximal utility from this consumption.

e W/ = W — c is the state transition equation or equivalently the
evolution of cake size.

2not to be confused with derivatives, that is W denotes W; and W' denotes Wit

30/37

Infinite Horizon - Remarks

In general, we use primes to denote future values when we are looking for
a stationary solution to an infinite horizon problem.

The value function here is stationary, that is:

Vi(W) = Ve (W) = V(W) for any k >0

Stationarity means time-invariant, that is the value function or policy
functions are optimal and do not change with time.

Remember these functions denote a path or a rule, so stationarity here
means that this path is constant (not the actual variable).

31/37

Infinite Horizon - Remarks

e The two policy functions maps the state variables to controls (choices).

e In this problem, the two policy functions are:
W'(W) and c(W)

next period cake size and consumption.

e State = Sufficient knowing W is sufficient to summarize all the data we
need for our problem. W is therefore, the state variable

o If | know V(W): tell me W and | will tell you how much to consume and
to save

32/37

Infinite Horizon - State and Control Variables

e What are the state and control (choice) variables?

e The state variable is the size of the cake (W) that is given at the start of
any period.

e The cake size completely summarizes all information from the past that is
needed for the forward looking optimization problem.

e The control variable is the variable that is being chosen. In this case, it
is the level of consumption in the current period, ¢ and next period cake
size W',

e The transition (or the constraint) desribes the dependence of the state
tomorrow on the state today and the control today:

W =W-—-c

33/37

Infinite Horizon - State and Control Variables

Alternatively, we can write the DP, in (10), as:

V(W) = mm?/x{u(W — W) +6V(W’)}

where we have substituted the constraint so that we have to choose only
tomorrow's cake size.

e Either specification will yield the same result. Fewer choice variables
are easier to work with.

e This expression is a functional equation and is often called a Bellman
equation after Richard Bellman, the originator of dynamic programming.

e Note that the unknown in the Bellman equation is the value function
itself: the idea is to find a function V(W) that satisfies this condition for
all W.

34/37

Items for Review

Sequential Lagrangian

Shadow Price

Consumption/Saving with no production, depreciation
Sequential solution with Euler Equation

Finite Horizon

Recursive Approach

Bellman Equation

Continuation Value

Infinite Horizon

State and Choice/Control Variables

34/37

Appendix: For all the rest: Shooting Algorithm

1. Initial Condition: Start with W, e.g. 100.
2. Update: Use Euler Equation in terms of cake, second-order difference
eqn:
Uc(Wt - Wt+1) = ﬂUc(Wt-s-l - Wt+2)

3. Rearrange, and guess W;:
Wio = Wir — uz M ((1/B)ue(We — Weyr))

4. Start: We have Wi, guess W, this implies W3. Then we can roll forward
to get Wy,, W41, This is the first shot. Aim for zero.

5. Terminal condition Adjust guess W, keep shooting until W1 =~ 0.

6. Optimal Consumption path: C; = W;_1 — W,

e Fast numerical methods in matlab, julia etc to solve (Bisection!)

e One can also do a reverse shot: We know W, = 0, guess W7 to imply
Wr_1,..., W;, and aim for starting W; = 100.

35/37

Recursive model solution(s) 1: constraint substituted

Derivative w.r.t W’:

V(W) = max {u(w — w') + gV (W)} (19)
ov(W")
(W] —uC(W—W/)—l—B(W) =0 (FOC)
We can use the envelope condition and roll forward one period for the

derivative

[EC:] Vw(W)=u(W - W' = ucc) (20)

= Vi (W) = uc(W' — W) = u. (') (21)
Combined:

uc(c) = Buc(c’)

(22)

36/37

Recursive model solution(s) 2: constraint explicit

vww:T%{mq+ﬁwwq}s¢ cHW =W (23)
We can still build a recursive Lagrangian with one (1!) constraint
L=u(c)+BV(W) = Xc+ W — W)
FOCs wrt (c, W'):

[e:] we(e)—A=0 (24)

> VW) _
(W] 5(W) A=0 (25)

Envelope Condition again (we can ignore indirect effects)

L, ovw) oL . ov(w') .,
ECD 5w =aw =~ —awr (26)
Combined:

ue(c) = Buc(c’) (27)

37/37

	Dynanmic Programming
	Cake Eating Problem
	Recursive Approach
	Infinite Horizon
	Topic for Review

