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Lecture Overview

• Toolbox: Optimisation by Lagrange Multiplier

• Adjustment Cost Model

• Tobin’s Q
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Lagrangians
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Lagrangian Function and Lagrange Multiplier

• A useful formulation for constrained optimization is the concept

of Lagrangian function, named after mathematician Joseph-Louis

Lagrange

• With Lagrange multipliers, the Lagrangian incorporates all

constraints into a single function.

• Any constrained optimization becomes unconstrained

(= easy to solve).

• The multipliers have intuitive economic interpretation as a kind of

exchange rate.
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Constrained Optimization - Primal Problem

max
x

f (x)

subject to: gi (x) = ci for i = 1, . . . ,m

• f (x) is the objective function.

• x = (x1, x2, . . . , xn)
′

• Constraints usually written as gi (x) = 0.

4/45



max
x ,y

{
F (x , y) = x2ey + 3xy2

}
s.t. x2 + y2 = 5

-16

-8

-4

-4

-2

-2

-1

-1

1
1

1

1

1

1

4

4

4

4

4

4

8

8

8

8

8

16

16

16

16

16

25

25

25

48

48

8

48

8
4

1 1

25

16 16

25

4 8

4
14

8

1

-1

8
4

-2 1
-4

-1

-8

Figure 1: Top and Side Views of Optimised F (x , y) s.t. g(x , y) = c 5/45



Lagrange Function - Dual Problem

• Lagrangian function, L:

L(x, λ) = f (x)−
m∑
i=1

λi (gi (x)− ci )

• λ = (λ1, . . . , λm)
′ are Lagrange multipliers.

• Equivalent dual maximization:

max
x

L(x, λ)

which is an unconstrained maximization problem.1

1strictly, written fully as: minλi {maxx{L(x, λ)}}, see slide 9 for logic
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Lagrange Function and Optimality

• First-order conditions (FOCs), one for each variable and constraint:

∂L(x , λ)
∂xi

= 0, i = 1, . . . , n

∂L(x , λ)
∂λj

= 0, j = 1, . . . ,m

• If f is concave and gi convex and differentiable, conditions are

sufficient for a maximum.

7/45



Example/See Practice Questions.pdf on moodle for more!

Constrained optimisation (e.g.) I’ve got £16 to spend on beer and

pizza in West End Tavern (prices:£1 beers, £4 pizzas)

u(x , y) = ln(x) + ln(y) s.t. x + 4y = 16

Lagrangian:

L(x , y , λ) = ln(x) + ln(y)− λ[x + 4y − 16]

First order conditions (FOCs):

[Lx ] 1/x = λ; [Ly ] 1/y = 4λ [Lλ] x + 4y = 16

Lλ : (1/λ) + 4(1/4λ) = 16 ⇒ λ = 2/16

(x∗, y∗, λ∗) =

(
16

2
,
16

8
,
2

16

)
; u∗ = ln(16) (1)
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For the visual learners: Graph of the U-max problem

Figure 2: Caption

black: levels of utility: all (x , y) s.t. u(x , y) = ū (e.g . = 1)

red dash: Budget line, B / red solid: utility of B
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Lagrangian Example Comments

We have taken the constrained optimisation, and transformed it into an

unconstrained problem

• Use a new (endogeneous!) variable, λ. Changes with the

optimisation problem posed:

• Budget: 1x + 4y = B. With these preferences: λ = 2/B

• The multiplier will adapt to be exactly what is needed to maintain

the constraint

Penalty interpretation: multiplier punishes deviations the right amount

• the problem looks like : utility(spending)− λ(spending − budget)

• if (spend > budget) I lose utility in the 2nd term (not optimal)

• if (spend < budget) I could boost spend/raise utility (not optimal)
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The Lagrange Multiplier has an Economic Interpretation

Interpretation

The Lagrange multiplier can be interpreted as the rate of change in the

maximal value of the objective function as the constraint is relaxed

λ∗
i =

∂F (x∗)

∂ci
=

∂L(x∗, λ∗)

∂ci

• Shadow price: converts one unit to another (e.g.: £$ to utility)

∂F (x∗) = λ∗
i ∂ci

➤ combine total differentials with FOCs

we will go over this on next slide, but don’t worry the practice questions

will guide you through examples
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Shadow Price

At the optimum choices given c :

TD the constraint wrt c

Sub FOCs

Direct Attack w/ envelope condition2:
dL
dc

=
∂L
∂c

2See Practice Questions
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General Approach: The Recipe

• To maximize an (objective) function of x = (x1, ..., xn)
′

max
x

F (x)

subject to some constraints

gj(x) = cj

• Step 1: Write down the Lagrange function that converts this to an

unconstrained maximization problem by penalizing any constraint

violations:

L(x, λ) = f (x)−
m∑
j=1

λj(gj(x)− cj)

• Example for 2 inputs and a single constraint (either way is valid):

L(x , y , λ) = F (x , y)− λ(g(x , y)− c)

= F (x , y) + λ(c − g(x , y))
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General Approach: The Recipe

• Step 2: First order conditions (FOCs) n +m equations:

∂L
∂xi

= 0 ∀i , ∂L
∂λj

= 0 ∀j
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Lagrange Function: Transversality Conditions

• In infinite horizon problems, transversality conditions are used to

prevent divergence as t → ∞.

• e.g.: I could transfer more and more of my wealth to the infinitely

far future, and consume ct → ∞
• Discounting future payoffs so

lim
T→∞

βTπT = 0 if β ∈ [0, 1)

• All models in this course satisfy these conditions.
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Optional Appendix: Where does the Lagrangian come from?

max F(x, y) s.t. g(x, y) = c (2)

➔ Must stay on constraint, budget is fixed (total differential dg = 0):

dg = gxdx + gydy = 0 ⇒ dy = −gx
gy

dx (3)

➔ How does F change along g-contour, for small steps (dx , dy):

dF = Fxdx + Fydy (4)

= (Fx −
Fygx
gy

)dx (5)

➔ At optimum, dF
dx = 0 , ratios Fi/gi are equal to some value: λ(

Fx
gx

− Fy
gy

)
= (λ− λ) = 0 (6)
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Optional Appendix: Where does the Lagrangian come from?

F and g have been transformed into a new system

System defined by 2 new optimality ratios and 1 level constraint

Fx = λgx (7)

Fy = λgy (8)

g(x , y) = c (9)

The function L(x , y , λ) will give exactly [FOCs Lx ,Ly ,Lλ = 0] we need:

L(x , y , λ) = F (x , y)− λ(g(x , y)− c)

= F (x , y) + λ(c − g(x , y))
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Items for Review

• Partial and Total Derivatives

• Objective function

• Constraint

• Lagrangian function

• Lagrange Multiplier

• First Order Condition (FOC) for optimality

• Envelope Theorem / Envelope Condition

• Shadow Price

• Transversality and Discounting
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The “Adjustment Cost” or “Tobin” Model
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Motivation: Investment Dynamics of a firm over time

Time, t →

Investment, It One-and-done (user cost model)

Hump-shaped (data)

• Firm investment response to changes in economic conditions in UC

Model and more realistic path like in data
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Adjustment Cost Model

• Costs arise when the capital stock is adjusted quickly.

• Expansion (or reversal) of capital is painful

• Examples: installation, training, learning, shutdowns.

- installations (/removals) have specific requirements (skills, other

machines)

- works must be trained or get experience using new capital

- replaced machine cannot produce while it is being removed

• We focus on convex adjustment costs

- more smaller changes favoured over one very large installation

- humps vs one-and-done spikes in It in data

• Introduces Tobin’s Q.
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Adjustment Costs: Internal vs External

• Internal: direct costs of changing capital stocks. e.g:

- installation

- training workers to operate new machines

- temporary shutdowns or other disruption

- overtime or slack

- management burden: integrating new projects, restructuring

departments

- supply chains must be coordinated

• (External: capital prices fluctuate)

• We focus on internal adjustment costs.
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Adjustment Cost Model - Assumptions

• Infinite time horizon, T = ∞, firm lives forever, so no entry/exit

- think as unknown, very far away end point

- Firm treats every day as “business as usual”

- Doesn’t worry about exit / end conditions on an average day

- discounting = the very far future has tiny extra value

• The firm maximises its value = present value of dividends

• Constant interest rate, r

• Convex, increasing adjustment cost, AC(It)
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Convex Costs

Size of investment, It

Adjustment Cost, AC(It)

• Increasing Marginal Cost of installation (slope) in investment

• Ikea furniture: building the next wardrobe is harder than the last

(tiredness accumulates)

• AC(1) = 1,AC(2) = 4,AC(3) = 9, ... 22/45



Reminder: Concave vs. Convex shapes

Input, K

Profit, π(K )

Concave: Decreasing Returns

Size of investment, It

Adjustment Cost, AC(It)

Convex: Accelerating Costs

• Tip: conCave looks a bit like a C, conVex looks like a V?
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Firm’s Problem

• Value: The Value of the firm at time t is given by:

Vt = Et

[ ∞∑
i=0

(
1

1 + r

)i

Dt+i

]

• Expectations: We use the operator Et since future dividends are

random variables, but we can forecast given information today

• LOM: The firm aims to maximise this Value, given that current

investments It become productive with a 1-period lag. Capital

therefore follows this law of motion:

Kt+1 = (1− δ)Kt + It ∀t
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Adjustment Costs

Adjustment Every unit of investment incurs quadratic adjustment cost

ACt , representing lost revenues of disruption, compatibility issues etc.

ACt =
ϕ

2
(It)2

• Note: When ϕ = 0, we have no adjustment costs.

• This AC:

- lost revenues scale convexly with investment in levels.

- κ
2 (

I
K )2 scales with investment rate

- µ
2 (

I
K )2K scales with investment rate, invariant to firm size

• see practice problems for this last cost function
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Dividends, Profits, Technology and Productivity

Dividends can be defined as profits net of investment expenditures and

adjustment costs:

Dt = π(θt ,Kt)− It −ACt

Here we have assumed that the price of capital is one.

• π(θt ,Kt): profit function,e.g θtK
α
t

• θt : productivity shock

• Modeled as stochastic process, future is uncertain, but we can

form conditional expectations, and know we will be optimising

26/45



Effect of θ in π(θ, k) = θkα

0 1 2 3 4 5
0

1

2

3

Capital Today, k

P
ro
fi
t
to
d
ay
,
θk

α

θL = 0.8
θM = 1.0
θH = 1.2

• Scales profits: shrinks/magnifies profit function by factor θ
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Lagrangian Formulation

the complete firm’s problem as follows. Objective function:

max
{It}∞0

E0

∞∑
t=0

βt

[
π(θt ,Kt)− It −

ϕ

2
I2
t

]
subject to:

Kt+1 = (1− δ)Kt + It ∀t

Where:

• β = 1
1+r is the discount factor;

• r = 1−β
β is the discount rate

• If we specify one time-preference parameter, it implies the other.
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Lagrangian Formulation

L = max
{It}∞0

E0

∞∑
t=0

βt

[
π(θt ,Kt)−It −

ϕ

2
I2
t −qt(Kt+1 − (1− δ)Kt − It)

]
(10)

For each period t = 0,1,2,..., we have:

• Flow operating profits

• costs of investing

• law of motion constraint

• lagrange multiplier, qt

Initial condition: Assume firm starts with some known capital and

productivity (K0, θ0).
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First Order Conditions

∂L

∂It
= 0 ⇒ qt = 1 + ϕIt (11)

∂L

∂Kt+1
= 0 ⇒ qt = βEt

[
πK (θt+1,Kt+1) + qt+1(1− δ)

]
(12)

∂L

∂qt
= 0 ⇒ Kt+1 = (1− δ)Kt + It (13)
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Investment Rule

Marginal Cost of Investment = Marginal Benefit of Investment

1 + ϕIt = βEt

(
πK (θt+1,Kt+1) + qt+1(1− δ)

)
price + marginal AC = βEt( MPK + shadow value of capital)

• LHS: marginal cost of an additional unit of capital, the price of

capital (pk = 1) plus the marginal adjustment cost (ϕIt).
• RHS: expected discounted value of marginal profitability and

value of non-depreciated capital.

• Shadow v market prices: The firm prices capital at q compared to

the market for captial goods pk = 1
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Recursive Form

We can keep expanding FOC(Kt+1) by recursive subsitution, we can

move time forward one period, and substitute on the RHS3

qt = βEt

[
πK (θt+1,Kt+1) + qt+1(1− δ)

]
;

(Law of iterated expectations:Et(Et+k [X ]) = Et(X )) (14)

= βEt

[
MPKt+1 + β(1− δ)MPKt+2 + β(1− δ)2qt+2

]
= βEt

[
MPKt+1 + β(1− δ)MPKt+2 + β2(1− δ)2MPKt+3 + ...

]
(15)

3“My best guess today of what my best guess will be tomorrow ...must already be

my best guess today”. This is saying we only have information up to time t for all

future forecasting
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Full Sequence

qt = βEt

[
MPKt+1 + β(1− δ)MPKt+2 + β2(1− δ)2MPKt+3 + ...

]
Let h be the number of steps into the future from today:

qt = βEt

∞∑
h=0

βh(1− δ)hMPK(t+1)+h (16)

Interpretation: The firm values capital according to the marginal

increase in profits generated for the rest of its useful lifetime
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Interpretation

• The multiplier qt gives us shadow price of capital

• The shadow price describes how much the value of the firm will

rise if we were to have an additional unit of capital.

• The advantage of this model is that we have also defined the value

of capital or the value of firm
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Adjustment Cost Model: Remarks

• Since the price of a new capital good is equal to one, the optimal

investment rule says to keep investing in capital until the

marginal value of this action given by qt equals its cost.

• qt is called Marginal Q or Tobin’s Q, named after the economist

James Tobin (1918-2002) winner of the 1981 Nobel Prize
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Q-theory a.k.a. Tobin’s Q
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Tobin’s Q

From the first order condition in eq. (6), we have:

• qt = 1 + ϕIt

in terms of investments:

• It =
1
ϕ(qt − 1)

Tobin Model Investment Rule:

Investment positive iff qt > 1

• iff: not a typo: “if and ONLY IF”

• ϕ controls sensitivity of investment to changes in q

• investment should ONLY be a function of q, ϕ and other parameters
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Tobin’s Q Model: The Pros

✔ Intuitive rule: The investment rule clearly shows that investment

depends on future expected profitability. Since capital is durable

and capital boosts production and profits this makes sense.

✔ Sufficient statistic: qt or marginal Q is what we call in statistics

a sufficient statistic for investment

• That is, knowing Q is sufficient to understand all relevant

information related to the investment decision

✔ More realistic Hump-shaped dynamics: no more one-and-done,

slow decay (some investment over many periods), sometimes

hump-shaped
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Responses after a shock to Earnings

Figure 3: Responses of Capital and Investment to a Shock to Revenue

• Very sensitive to model parameters; so probably can’t generate

hump with realistic values
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Tobin’s Q Model: The Cons

✖ Always-investing problem: firms respond continuously to changes

in the environment.

⇒ Investment predicted to always be small and continuous in Tobin’s

world, its never 0

✖ Lumps and Bumps Unfortunately, this is not true in empirical data

where investment is lumpy

⇒ Firms often go many periods with no significant adjusment before

beginning the installation cycle

✖ Zeroes: predicts too little inaction (≈ 0s),

✖ Spikes: the model underestimates extreme investment events in the

tails of the distribution (not enough mega-installs, e.g. >100%)
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Investment Distribution

−100 −50 0 50 100 150

Tobin model fits well

Model struggles

Investment rate (I/K )

%
of

fi
rm

s

40/45



Firm Value and Investment

• Firm value ≈ stock market value (market cap)

• Future expected profits raise firm value

• Tobin model says: Stock market value (expected profits), &

investment comove together

Expectation of

future profitable opportunities

Et(MPKt+1,MPKt+2, ...)

Higher Value, Vt
+ Stock Market Capitalisation

(valuation £$)

Higher Q and Investment

It =
1
ϕ(qt − 1)
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Empirical Confirmation?

• Example: 1990s tech boom on NASDAQ

- Stock prices & investment surged (and crashed) together

• Right Now: US Tech Giants (Google, Meta, Amazon, AI firms):
surging market caps, large capex

- ignores bubble dynamics (see: pets.com)

- Ultra-large players have other strategic reasons for high capex

- recall the challenges of valuing intangibles (lecture 1)

- Market is betting (expecting) that large AI investments will pay off

• Microsoft, Amazon, Alphabet, Meta, and Apple 400bn capex

• OpenAI-Nvidia 100bn (per year)

• Easily over 1 percent of GDP (30 trillion USD) (extremely large)

• Internet/DotCom invest around 0.5 percent (smaller players)
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Firm Value and Investment

Expectation of

future profitable opportunities

Et(MPKt+1,MPKt+2, ...)

Higher Value, Vt
+ Stock Market Capitalisation

(valuation £$)

Higher Q and Investment

It =
1
ϕ(qt − 1)

Speculation / Animal Spirits / Bubble
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... in the data
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Further Reading

• The Economist: “The murky economics of the data-centre

investment boom”

• The Economist: “Big tech’s capex splurge may be irrationally

exuberant”

• Link FT.com: the relentless race for AI capacity and the data

centres at the heart of hundreds of billions of dollars in capital

investment.

• Gregory Chow, Dynamic Economics: Optimization by the Lagrange

Method, Chapter 1: 1.1–1.3, 1.8
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https://www.economist.com/leaders/2024/05/16/big-techs-capex-splurge-may-be-irrationally-exuberant
https://www.economist.com/leaders/2024/05/16/big-techs-capex-splurge-may-be-irrationally-exuberant
https://www.economist.com/business/2025/09/30/the-murky-economics-of-the-data-centre-investment-boom
https://www.economist.com/business/2025/09/30/the-murky-economics-of-the-data-centre-investment-boom
https://ig.ft.com/ai-data-centres/
https://ig.ft.com/ai-data-centres/
https://ig.ft.com/ai-data-centres/


Items for Review

• Tobin’s Q

• Investment rule in Q model

• Does Q match the facts?

• Pros of the Tobin model

• Criticisms of Tobin model

• Investment in 2025
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