Extra Practice Questions - Dynamic Programming

Thomas Walsh / Investment, Finance & Asset Pricing, 2025/6

1 Short Horizon Cake Eating

Consider a consumer with initial wealth W = 100 who lives for T = 3 periods with discount factor $\beta = 0.9$ and utility function $u(c) = \ln(c)$. Time is discrete and runs for t = 1, 2, 3.

- (a) Write down the consumer's sequential optimization problem with the appropriate constraint(s).
- (b) Formulate this as a recursive (Bellman) problem. Clearly identify the state variable(s), control variable(s), and write the value function.
- (c) Using either the Sequential or Recursive approach, obtain the Euler equation and derive the optimal consumption path $\{c_1, c_2, c_3\}$.
- (d) Verify your solution obeys the resource constraint ("we can't eat more cake in total than we had at the start"). How do we know this resource constraint will hold with *equality* in this problem?

2 Envelope Condition Application

Consider the infinite horizon problem:

$$V(W) = \max_{c,W'} \{u(c) + \beta V(W')\}$$
 s.t. $W' = W - c$

- (a) Take the first-order condition (FOC) with respect to c. You can substitute the constraint into the Bellman equation directly, BUT a Lagrangian will likely be more useful.
- (b) Derive the envelope condition $V_W(W)$, the slope of the value function.
- (c) Combine the FOC and envelope condition to obtain the Euler equation.
- (d) Explain intuitively what the envelope condition represents in this context.

3 Investment with Productivity Shocks

A firm faces the following optimization problem:

$$V(\theta,K) = \max_{K'} \left\{ \theta K^\alpha - (K' - (1-\delta)K) - \frac{\phi}{2}(K' - (1-\delta)K)^2 + \beta \operatorname{\mathbb{E}}[V(\theta',K')] \right\}$$

where θ follows a two-state Markov process (meaing only the current state matters for the distribution of future states tomorrow). The exogeneous state (business conditions) can take two values, high and low: $\theta \in \{\theta_L, \theta_H\}$ with transition matrix:

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 0.8 \end{pmatrix}$$
 where you can think of each element as $P_{ij} = P(j|i)$

- (a) Identify all state variables (2) and control variables (2) in this problem.
- (b) What is the persistence of each business conditions state, that is, the probability that tomorrow's conditions are the same as today's, for each state θ_L and θ_H ? Which state is more persistent? What does this imply about the firm's expectations (think about the duration of spells of good and bad times)?
- (c) Write out explicitly what $\mathbb{E}[V(\theta', K')]$ means given the current state $\theta = \theta_L$.
- (d) Derive the first-order condition for optimal investment.
- (e) Interpret the role of the adjustment cost parameter ϕ in the investment decision.

4 Stationarity and Time Consistency

Consider the infinite horizon Bellman equation:

$$V(W) = \max_{W'} \{ u(W - W') + \beta V(W') \}$$

- (a) What does it mean for the value function to be "stationary"? Write this property mathematically.
- (b) Suppose you solve this problem and obtain policy function W' = f(W). If you start with $W_0 = 10$ and compute $W_1 = f(10)$, explain why applying the same function $f(\cdot)$ again gives the optimal W_2 .

5 Marginal Q and Investment

In the adjustment cost model, we derived:

$$q = 1 + \phi I = \beta \mathbb{E}[\pi_{K'}(\theta', K') + (1 - \delta)q']$$

- (a) Provide an economic interpretation of marginal Q (what does q represent?).
- (b) If current q = 1.2 and $\phi = 2$, calculate the optimal level of investment I.
- (c) Suppose productivity is expected to be high next period with certainty ($\theta' = \theta_H$ with probability 1). Explain intuitively how this affects current investment through the expectation term.
- (d) What happens to investment when q < 1? Is this economically sensible given the model structure?

6 Discretization for Numerical Solution

You want to solve the following problem numerically:

$$V(k) = \max_{k' \in [0, k_{max}]} \left\{ k^{\alpha} - k' + (1 - \delta)k + \beta V(k') \right\}$$

with $\alpha = 0.3$, $\delta = 0.1$, $\beta = 0.96$, and $k_{max} = 50$.

- (a) You want to set up a grid for capital with $N_k = 100$ points. Write the Matlab command to do this.
- (b) Describe the structure of your value function iteration algorithm (you don't need to write actual code, just outline the steps).
- (c) How would you check for convergence in your algorithm?
- (d) What is a reasonable initial guess $V_0(k)$ to start the iteration? Justify your choice.

7 Reducing Choice Variables and Computation

Consider two formulations of the same problem:

Formulation A:

$$V(W) = \max_{c,W'} \{ u(c) + \beta V(W') \}$$
 s.t. $c + W' = W$

Formulation B:

$$V(W) = \max_{W'} \{ u(W - W') + \beta V(W') \}$$

- (a) Explain the relationship between these two formulations.
- (b) Solve Formulation A by setting up the Lagrangian with multiplier λ . Derive the FOCs and envelope condition.
- (c) Solve Formulation B directly. Show that you obtain the same Euler equation as in part (b).
- (d) Which formulation is computationally more efficient for numerical solution? Why? (Hint: what does the max operator mean computationally)

8 Bellman Operator and Convergence

Define the Bellman operator as a manipulation of an input function, which gives out another function according to:

$$\mathcal{T}[V](W) = \max_{c} \{u(c) + \beta V(W - c)\}$$

- (a) Explain what it means for V^* to be a "fixed point" of the Bellman operator \mathcal{T} .
- (b) How are we utilizing Blackwell's Sufficient Conditions when we do Value Function Iteration (VFI) numerically with (say) Matlab?
- (c) If we start the VFI recursions with $V_{n=0}(z,k) = \text{zeros(Nz,Nk)}$; What is the first value function iteration doing? What is happening as iterations increase?